d‑Retro Inverso Amylin and the Stability of Amylin Fibrils
Motivated by the role that amylin aggregates play in type-II diabetes, we compare the stability of regular amylin fibrils with the stability of fibrils where l-amino acid chains are replaced by d-retro inverso (DRI) amylin, that is, peptides where the sequence of amino acids is reversed, and at the...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2020-08, Vol.16 (8), p.5358-5368 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by the role that amylin aggregates play in type-II diabetes, we compare the stability of regular amylin fibrils with the stability of fibrils where l-amino acid chains are replaced by d-retro inverso (DRI) amylin, that is, peptides where the sequence of amino acids is reversed, and at the same time, the l-amino acids are replaced by their mirror images. Our molecular dynamics simulations show that despite leading to only a marginal difference in the fibril structure and stability, aggregating DRI-amylin peptides have different patterns of contacts and hydrogen bonding. Because of these differences, DRI-amylin, when interacting with regular (l) amylin, alters the elongation process and lowers the stability of hybrid amylin fibrils. Our results not only suggest the potential use of DRI-amylin as an inhibitor of amylin fibril formation but also point to the possibility of using the insertion of DRI proteins in l-assemblies as a way to probe the role of certain kinds of hydrogen bonds in supramolecular assemblies or aggregates. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.0c00523 |