Peri‐pharyngeal muscle response to inspiratory loading: comparison of patients with OSA and healthy subjects

Upper airway patency to airflow and the occurrence of obstructive sleep apnea involve a complex interplay between pharyngeal anatomy and synergic co‐activation of peri‐pharyngeal muscles. In previous studies we observed large differences in the response to sleep‐associated flow limitation between th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sleep research 2019-10, Vol.28 (5), p.e12756-n/a
Hauptverfasser: Oliven, Ron, Cohen, Guy, Somri, Mostafa, Schwartz, Alan R., Oliven, Arie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Upper airway patency to airflow and the occurrence of obstructive sleep apnea involve a complex interplay between pharyngeal anatomy and synergic co‐activation of peri‐pharyngeal muscles. In previous studies we observed large differences in the response to sleep‐associated flow limitation between the genioglossus and other (non‐GG) peri‐pharyngeal muscles. We hypothesized that similar differences are present also during wakefulness. In the present study we compared the response to inspiratory loading of the genioglossus electromyogram and four other peri‐pharyngeal muscles. Studies were performed in eight obstructive sleep apnea patients, seven age‐matched healthy subjects and five additional younger subjects. Electromyogram activity was evaluated over a range of negative oesophageal pressures and expressed as % of maximal electromyograms. In healthy subjects, the slope response to inspiratory loading (electromyogram/pressures) was similar for the genioglossus and non‐GG muscles studied. However, the electromyogram responses were significantly higher in the young subjects compared with older subjects. In contrast, in the obstructive sleep apnea patients, the electromyogram/pressure response of the non‐GG muscles was similar to that of the age‐matched healthy subjects, whereas the slope response of the genioglossus electromyogram was significantly higher than non‐GG muscles. We conclude that both age and the presence of obstructive sleep apnea affect the response of peri‐pharyngeal muscles to inspiratory loading. In patients with obstructive sleep apnea the genioglossus seems to compensate for mechanical disadvantages, but non‐GG muscles apparently are not included in this neuromuscular compensatory mechanism. Our current and previous findings suggest that attempts to improve obstructive sleep apnea with myofunctional therapy should put added emphasis on the training of non‐GG muscles.
ISSN:0962-1105
1365-2869
DOI:10.1111/jsr.12756