Modelling water levels of northwestern India in response to improved irrigation use efficiency

The groundwater crisis in northwestern India is the result of over-exploitation of groundwater resources for irrigation. The Government of India has targeted a 20 percent improvement in irrigation groundwater use efficiency. In this perspective, and using a regional-scale calibrated and validated th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-08, Vol.10 (1), p.13452-13452, Article 13452
Hauptverfasser: Shekhar, Shashank, Kumar, Suman, Densmore, A. L., van Dijk, W. M., Sinha, Rajiv, Kumar, Manoranjan, Joshi, Suneel Kumar, Rai, Shive Prakash, Kumar, Dewashish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The groundwater crisis in northwestern India is the result of over-exploitation of groundwater resources for irrigation. The Government of India has targeted a 20 percent improvement in irrigation groundwater use efficiency. In this perspective, and using a regional-scale calibrated and validated three-dimensional groundwater flow model, this article provides the first forecasts of water levels in the study area up to the year 2028, both with and without this improvement in use efficiency. Future water levels without any mitigation efforts are anticipated to decline by up to 2.8 m/year in some areas. A simulation with a 20 percent reduction in groundwater abstraction shows spatially varied aquifer responses. Tangible results are visible in a decade, and the water-level decline rates decrease by 36–67 percent in over-exploited areas. Although increasing irrigation use efficiency provides tangible benefits, an integrated approach to agricultural water management practice that incorporates use efficiency along with other measures like water-efficient cropping patterns and rainwater harvesting may yield better results in a shorter period.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-70416-0