Structural Basis for the Activation and Target Site Specificity of CDC7 Kinase
CDC7 is an essential Ser/Thr kinase that acts upon the replicative helicase throughout the S phase of the cell cycle and is activated by DBF4. Here, we present crystal structures of a highly active human CDC7-DBF4 construct. The structures reveal a zinc-finger domain at the end of the kinase insert...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2020-08, Vol.28 (8), p.954-962.e4 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CDC7 is an essential Ser/Thr kinase that acts upon the replicative helicase throughout the S phase of the cell cycle and is activated by DBF4. Here, we present crystal structures of a highly active human CDC7-DBF4 construct. The structures reveal a zinc-finger domain at the end of the kinase insert 2 that pins the CDC7 activation loop to motif M of DBF4 and the C lobe of CDC7. These interactions lead to ordering of the substrate-binding platform and full opening of the kinase active site. In a co-crystal structure with a mimic of MCM2 Ser40 phosphorylation target, the invariant CDC7 residues Arg373 and Arg380 engage phospho-Ser41 at substrate P+1 position, explaining the selectivity of the S-phase kinase for Ser/Thr residues followed by a pre-phosphorylated or an acidic residue. Our results clarify the role of DBF4 in activation of CDC7 and elucidate the structural basis for recognition of its preferred substrates.
[Display omitted]
•DBF4 activates CDC7 kinase via a two-step mechanism•Zinc-finger domain in CDC7 KI2 interacts with DBF4 motif M•Invariant CDC7 residues Arg373 and Arg380 engage P+1 substrate site
CDC7 is a protein kinase that is essential for cell division. Using X-ray crystallography, Cherepanov and colleagues explain the two-step mechanism of CDC7 activation by its dedicated regulator protein DBF4. They also identify amino acid residues in CDC7 that are crucial for the recognition of its preferred substrates. |
---|---|
ISSN: | 0969-2126 1878-4186 |
DOI: | 10.1016/j.str.2020.05.010 |