Recent population expansion of longtail tuna Thunnus tonggol (Bleeker, 1851) inferred from the mitochondrial DNA markers

The population genetic diversity and demographic history of the longtail tuna Thunnus tonggol in Malaysian waters was investigated using mitochondrial DNA D-loop and NADH dehydrogenase subunit 5 (ND5). A total of 203 (D-loop) and 208 (ND5) individuals of T. tonggol were sampled from 11 localities ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ (San Francisco, CA) CA), 2020-08, Vol.8, p.e9679-e9679, Article 9679
Hauptverfasser: Kasim, Noorhani Syahida, Jaafar, Tun Nurul Aimi Mat, Piah, Rumeaida Mat, Arshaad, Wahidah Mohd, Nor, Siti Azizah Mohd, Habib, Ahasan, Abd Ghaffar, Mazlan, Sung, Yeong Yik, Danish-Daniel, Muhd, Tan, Min Pau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The population genetic diversity and demographic history of the longtail tuna Thunnus tonggol in Malaysian waters was investigated using mitochondrial DNA D-loop and NADH dehydrogenase subunit 5 (ND5). A total of 203 (D-loop) and 208 (ND5) individuals of T. tonggol were sampled from 11 localities around the Malaysian coastal waters. Low genetic differentiation between populations was found, possibly due to the past demographic history, dispersal potential during egg and larval stages, seasonal migration in adults, and lack of geographical barriers. The gene trees, constructed based on the maximum likelihood method, revealed a single panmictic population with unsupported internal clades, indicating an absence of structure among the populations studied. Analysis on population pairwise comparison Phi(S)(T) suggested the absence of limited gene flow among study sites. Taken all together, high haplotype diversity (D-loop = 0.989-1.000; ND5 = 0.848-0.965), coupled with a low level of nucleotide diversity (D-loop = 0.019-0.025; ND5 = 0.0017-0.003), "star-like" haplotype network, and unimodal mismatch distribution, suggests a recent population expansion for populations of T. tonggol in Malaysia. Furthermore, neutrality and goodness of fit tests supported the signature of a relatively recent population expansion during the Pleistocene epoch. To provide additional insight into the phylogeographic pattern of the species within the Indo-Pacific Ocean, we included haplotypes from GenBank and a few samples from Taiwan. Preliminary analyses suggest a more complex genetic demarcation of the species than an explicit Indian Ocean versus Pacific Ocean delineation.
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.9679