An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus
This article investigates a family of approximate solutions for the fractional model (in the Liouville-Caputo sense) of the Ebola virus via an accurate numerical procedure (Chebyshev spectral collocation method). We reduce the proposed epidemiological model to a system of algebraic equations with th...
Gespeichert in:
Veröffentlicht in: | Chaos, solitons and fractals solitons and fractals, 2020-11, Vol.140, p.110174-110174, Article 110174 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article investigates a family of approximate solutions for the fractional model (in the Liouville-Caputo sense) of the Ebola virus via an accurate numerical procedure (Chebyshev spectral collocation method). We reduce the proposed epidemiological model to a system of algebraic equations with the help of the properties of the Chebyshev polynomials of the third kind. Some theorems about the convergence analysis and the existence-uniqueness solution are stated. Finally, some numerical simulations are presented for different values of the fractional-order and the other parameters involved in the coefficients. We also note that we can apply the proposed method to solve other models. |
---|---|
ISSN: | 0960-0779 1873-2887 0960-0779 |
DOI: | 10.1016/j.chaos.2020.110174 |