Extended experimental inferential structure determination method in determining the structural ensembles of disordered protein states

Proteins with intrinsic or unfolded state disorder comprise a new frontier in structural biology, requiring the characterization of diverse and dynamic structural ensembles. Here we introduce a comprehensive Bayesian framework, the Extended Experimental Inferential Structure Determination (X-EISD) m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications chemistry 2020-01, Vol.3 (1), Article 74
Hauptverfasser: Lincoff, James, Haghighatlari, Mojtaba, Krzeminski, Mickael, Teixeira, João M. C., Gomes, Gregory-Neal W., Gradinaru, Claudiu C., Forman-Kay, Julie D., Head-Gordon, Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteins with intrinsic or unfolded state disorder comprise a new frontier in structural biology, requiring the characterization of diverse and dynamic structural ensembles. Here we introduce a comprehensive Bayesian framework, the Extended Experimental Inferential Structure Determination (X-EISD) method, which calculates the maximum log-likelihood of a disordered protein ensemble. X-EISD accounts for the uncertainties of a range of experimental data and back-calculation models from structures, including NMR chemical shifts, J-couplings, Nuclear Overhauser Effects (NOEs), paramagnetic relaxation enhancements (PREs), residual dipolar couplings (RDCs), hydrodynamic radii (R h ), single molecule fluorescence Förster resonance energy transfer (smFRET) and small angle X-ray scattering (SAXS). We apply X-EISD to the joint optimization against experimental data for the unfolded drkN SH3 domain and find that combining a local data type, such as chemical shifts or J-couplings, paired with long-ranged restraints such as NOEs, PREs or smFRET, yields structural ensembles in good agreement with all other data types if combined with representative IDP conformers. Characterising ensembles and populations of disordered structures is a challenge in structural biology. Here a Bayesian model allows solution data from NMR, fluorescence, and SAXS experiments to be synthesised in order to quantify the conformational distribution of disordered protein states.
ISSN:2399-3669
2399-3669
DOI:10.1038/s42004-020-0323-0