Precise Species Identification for Enterobacter : a Genome Sequence-Based Study with Reporting of Two Novel Species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov

Enterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mSystems 2020-08, Vol.5 (4)
Hauptverfasser: Wu, Wenjing, Feng, Yu, Zong, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title mSystems
container_volume 5
creator Wu, Wenjing
Feng, Yu
Zong, Zhiyong
description Enterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all subspecies assignments of Enterobacter were incorrect. Second, we characterized and reported two novel Enterobacter species with clinical significance. Third, we curated 1,997 Enterobacter genome sequences deposited in GenBank and found that the species identification of most Enterobacter strains needed to be corrected. Fourth, we found that the most common Enterobacter species seen in clinical samples is Enterobacter xiangfangensis rather than Enterobacter cloacae . Fifth, we identified 14 tentative novel Enterobacter and 18 tentative novel non- Enterobacter species. This study highlights that updated and curated taxonomic assignments are the premise of correct species identification. We recommend that future Enterobacter studies need to use the updated taxonomy to avoid misleading information. The genus Enterobacter comprises common pathogens and has a complicated taxonomy. Precise taxonomic assignation lays a foundation for microbiology. In this study, we updated the Enterobacter taxonomy based on robust genome analyses. We found that all Enterobacter subspecies assignments were incorrect. Enterobacter cloacae subsp. dissolvens and Enterobacter hormaechei subsp. hoffmannii are species ( Enterobacter dissolvens and Enterobacter hoffmannii , respectively) rather than subspecies. Enterobacter xiangfangensis , Enterobacter hormaechei subsp. oharae , and Enterobacter hormaechei subsp. steigerwaltii are not Enterobacter hormaechei subspecies but belong to the same species ( Enterobacter xiangfangensis ). Enterobacter timonensis should be removed to Pseudenterobacter , a novel genus. We then reported two novel species, Enterobacter quasiroggenkampii and Enterobacter quasimori , by genome- and phenotype-based characterization. We also applied the updated taxonomy to curate 1,997 Enterobacter genomes in GenBank. Species identification was changed following our updated taxonomy for the majority of publicly available strains (1,542, 77.2%). The most common Enterobacter species was E. xiangfangensis . We identified 14 novel tentative Enterobacter genomospecies. This study highlights that updated and curated taxonomic assignments are the premise of correct identification
doi_str_mv 10.1128/mSystems.00527-20
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7406230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430653064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-3d1bfc56e9a606100b972ce88d73cb723e63dc654ab7246ef4f32fd5f108da273</originalsourceid><addsrcrecordid>eNptUctuFDEQtBCIRCEfwM1HDszix4y9ywEJohAiRQliw9ny2O2NYcae2J6N9uv4NUxeIlIOrepWV1dJXQi9pWRBKVt-GNe7XGDMC0I6JhtGXqB9xuWq6YiUL__r99Bhzr8IIVRwSdnqNdrjTHa8o3Qf_fmewPgMeD1VhIxPLYTinTe6-BiwiwkfhwIp9tpUwB-xxicQ4lhP4HqGYKD5ojNYvC6z3eEbX67wD5hiKj5scHT48ibi87iF4cHj_VPF61lnn-JmA-G3HifvcZ4WOMTtAutgn-GOMT1y3qBXTg8ZDu_xAP38enx59K05uzg5Pfp81hguRWm4pb0znYCVFkRQQvqVZAaWSyu56SXjILg1omt1HVoBrnWcOds5SpZWM8kP0Kc73WnuR7CmPinpQU3JjzrtVNRePd0Ef6U2catkSwTjpAq8uxdIsb4tFzX6bGAYdIA4Z8VaTkRXq61Uekc1KeacwD3aUKL-Za8esle32StG-F-0AKfv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430653064</pqid></control><display><type>article</type><title>Precise Species Identification for Enterobacter : a Genome Sequence-Based Study with Reporting of Two Novel Species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov</title><source>American Society for Microbiology</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wu, Wenjing ; Feng, Yu ; Zong, Zhiyong</creator><contributor>Lal, Rup</contributor><creatorcontrib>Wu, Wenjing ; Feng, Yu ; Zong, Zhiyong ; Lal, Rup</creatorcontrib><description>Enterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all subspecies assignments of Enterobacter were incorrect. Second, we characterized and reported two novel Enterobacter species with clinical significance. Third, we curated 1,997 Enterobacter genome sequences deposited in GenBank and found that the species identification of most Enterobacter strains needed to be corrected. Fourth, we found that the most common Enterobacter species seen in clinical samples is Enterobacter xiangfangensis rather than Enterobacter cloacae . Fifth, we identified 14 tentative novel Enterobacter and 18 tentative novel non- Enterobacter species. This study highlights that updated and curated taxonomic assignments are the premise of correct species identification. We recommend that future Enterobacter studies need to use the updated taxonomy to avoid misleading information. The genus Enterobacter comprises common pathogens and has a complicated taxonomy. Precise taxonomic assignation lays a foundation for microbiology. In this study, we updated the Enterobacter taxonomy based on robust genome analyses. We found that all Enterobacter subspecies assignments were incorrect. Enterobacter cloacae subsp. dissolvens and Enterobacter hormaechei subsp. hoffmannii are species ( Enterobacter dissolvens and Enterobacter hoffmannii , respectively) rather than subspecies. Enterobacter xiangfangensis , Enterobacter hormaechei subsp. oharae , and Enterobacter hormaechei subsp. steigerwaltii are not Enterobacter hormaechei subspecies but belong to the same species ( Enterobacter xiangfangensis ). Enterobacter timonensis should be removed to Pseudenterobacter , a novel genus. We then reported two novel species, Enterobacter quasiroggenkampii and Enterobacter quasimori , by genome- and phenotype-based characterization. We also applied the updated taxonomy to curate 1,997 Enterobacter genomes in GenBank. Species identification was changed following our updated taxonomy for the majority of publicly available strains (1,542, 77.2%). The most common Enterobacter species was E. xiangfangensis . We identified 14 novel tentative Enterobacter genomospecies. This study highlights that updated and curated taxonomic assignments are the premise of correct identification. IMPORTANCE Enterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all subspecies assignments of Enterobacter were incorrect. Second, we characterized and reported two novel Enterobacter species with clinical significance. Third, we curated 1,997 Enterobacter genome sequences deposited in GenBank and found that the species identification of most Enterobacter strains needed to be corrected. Fourth, we found that the most common Enterobacter species seen in clinical samples is Enterobacter xiangfangensis rather than Enterobacter cloacae . Fifth, we identified 14 tentative novel Enterobacter and 18 tentative novel non- Enterobacter species. This study highlights that updated and curated taxonomic assignments are the premise of correct species identification. We recommend that future Enterobacter studies need to use the updated taxonomy to avoid misleading information.</description><identifier>ISSN: 2379-5077</identifier><identifier>EISSN: 2379-5077</identifier><identifier>DOI: 10.1128/mSystems.00527-20</identifier><identifier>PMID: 32753511</identifier><language>eng</language><publisher>1752 N St., N.W., Washington, DC: American Society for Microbiology</publisher><subject>Ecological and Evolutionary Science</subject><ispartof>mSystems, 2020-08, Vol.5 (4)</ispartof><rights>Copyright © 2020 Wu et al. 2020 Wu et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-3d1bfc56e9a606100b972ce88d73cb723e63dc654ab7246ef4f32fd5f108da273</citedby><cites>FETCH-LOGICAL-c376t-3d1bfc56e9a606100b972ce88d73cb723e63dc654ab7246ef4f32fd5f108da273</cites><orcidid>0000-0002-5654-4256 ; 0000-0002-7675-260X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406230/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406230/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,3175,27901,27902,53766,53768</link.rule.ids></links><search><contributor>Lal, Rup</contributor><creatorcontrib>Wu, Wenjing</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Zong, Zhiyong</creatorcontrib><title>Precise Species Identification for Enterobacter : a Genome Sequence-Based Study with Reporting of Two Novel Species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov</title><title>mSystems</title><description>Enterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all subspecies assignments of Enterobacter were incorrect. Second, we characterized and reported two novel Enterobacter species with clinical significance. Third, we curated 1,997 Enterobacter genome sequences deposited in GenBank and found that the species identification of most Enterobacter strains needed to be corrected. Fourth, we found that the most common Enterobacter species seen in clinical samples is Enterobacter xiangfangensis rather than Enterobacter cloacae . Fifth, we identified 14 tentative novel Enterobacter and 18 tentative novel non- Enterobacter species. This study highlights that updated and curated taxonomic assignments are the premise of correct species identification. We recommend that future Enterobacter studies need to use the updated taxonomy to avoid misleading information. The genus Enterobacter comprises common pathogens and has a complicated taxonomy. Precise taxonomic assignation lays a foundation for microbiology. In this study, we updated the Enterobacter taxonomy based on robust genome analyses. We found that all Enterobacter subspecies assignments were incorrect. Enterobacter cloacae subsp. dissolvens and Enterobacter hormaechei subsp. hoffmannii are species ( Enterobacter dissolvens and Enterobacter hoffmannii , respectively) rather than subspecies. Enterobacter xiangfangensis , Enterobacter hormaechei subsp. oharae , and Enterobacter hormaechei subsp. steigerwaltii are not Enterobacter hormaechei subspecies but belong to the same species ( Enterobacter xiangfangensis ). Enterobacter timonensis should be removed to Pseudenterobacter , a novel genus. We then reported two novel species, Enterobacter quasiroggenkampii and Enterobacter quasimori , by genome- and phenotype-based characterization. We also applied the updated taxonomy to curate 1,997 Enterobacter genomes in GenBank. Species identification was changed following our updated taxonomy for the majority of publicly available strains (1,542, 77.2%). The most common Enterobacter species was E. xiangfangensis . We identified 14 novel tentative Enterobacter genomospecies. This study highlights that updated and curated taxonomic assignments are the premise of correct identification. IMPORTANCE Enterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all subspecies assignments of Enterobacter were incorrect. Second, we characterized and reported two novel Enterobacter species with clinical significance. Third, we curated 1,997 Enterobacter genome sequences deposited in GenBank and found that the species identification of most Enterobacter strains needed to be corrected. Fourth, we found that the most common Enterobacter species seen in clinical samples is Enterobacter xiangfangensis rather than Enterobacter cloacae . Fifth, we identified 14 tentative novel Enterobacter and 18 tentative novel non- Enterobacter species. This study highlights that updated and curated taxonomic assignments are the premise of correct species identification. We recommend that future Enterobacter studies need to use the updated taxonomy to avoid misleading information.</description><subject>Ecological and Evolutionary Science</subject><issn>2379-5077</issn><issn>2379-5077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptUctuFDEQtBCIRCEfwM1HDszix4y9ywEJohAiRQliw9ny2O2NYcae2J6N9uv4NUxeIlIOrepWV1dJXQi9pWRBKVt-GNe7XGDMC0I6JhtGXqB9xuWq6YiUL__r99Bhzr8IIVRwSdnqNdrjTHa8o3Qf_fmewPgMeD1VhIxPLYTinTe6-BiwiwkfhwIp9tpUwB-xxicQ4lhP4HqGYKD5ojNYvC6z3eEbX67wD5hiKj5scHT48ibi87iF4cHj_VPF61lnn-JmA-G3HifvcZ4WOMTtAutgn-GOMT1y3qBXTg8ZDu_xAP38enx59K05uzg5Pfp81hguRWm4pb0znYCVFkRQQvqVZAaWSyu56SXjILg1omt1HVoBrnWcOds5SpZWM8kP0Kc73WnuR7CmPinpQU3JjzrtVNRePd0Ef6U2catkSwTjpAq8uxdIsb4tFzX6bGAYdIA4Z8VaTkRXq61Uekc1KeacwD3aUKL-Za8esle32StG-F-0AKfv</recordid><startdate>20200804</startdate><enddate>20200804</enddate><creator>Wu, Wenjing</creator><creator>Feng, Yu</creator><creator>Zong, Zhiyong</creator><general>American Society for Microbiology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5654-4256</orcidid><orcidid>https://orcid.org/0000-0002-7675-260X</orcidid></search><sort><creationdate>20200804</creationdate><title>Precise Species Identification for Enterobacter : a Genome Sequence-Based Study with Reporting of Two Novel Species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov</title><author>Wu, Wenjing ; Feng, Yu ; Zong, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-3d1bfc56e9a606100b972ce88d73cb723e63dc654ab7246ef4f32fd5f108da273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ecological and Evolutionary Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wenjing</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Zong, Zhiyong</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>mSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wenjing</au><au>Feng, Yu</au><au>Zong, Zhiyong</au><au>Lal, Rup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Species Identification for Enterobacter : a Genome Sequence-Based Study with Reporting of Two Novel Species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov</atitle><jtitle>mSystems</jtitle><date>2020-08-04</date><risdate>2020</risdate><volume>5</volume><issue>4</issue><issn>2379-5077</issn><eissn>2379-5077</eissn><abstract>Enterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all subspecies assignments of Enterobacter were incorrect. Second, we characterized and reported two novel Enterobacter species with clinical significance. Third, we curated 1,997 Enterobacter genome sequences deposited in GenBank and found that the species identification of most Enterobacter strains needed to be corrected. Fourth, we found that the most common Enterobacter species seen in clinical samples is Enterobacter xiangfangensis rather than Enterobacter cloacae . Fifth, we identified 14 tentative novel Enterobacter and 18 tentative novel non- Enterobacter species. This study highlights that updated and curated taxonomic assignments are the premise of correct species identification. We recommend that future Enterobacter studies need to use the updated taxonomy to avoid misleading information. The genus Enterobacter comprises common pathogens and has a complicated taxonomy. Precise taxonomic assignation lays a foundation for microbiology. In this study, we updated the Enterobacter taxonomy based on robust genome analyses. We found that all Enterobacter subspecies assignments were incorrect. Enterobacter cloacae subsp. dissolvens and Enterobacter hormaechei subsp. hoffmannii are species ( Enterobacter dissolvens and Enterobacter hoffmannii , respectively) rather than subspecies. Enterobacter xiangfangensis , Enterobacter hormaechei subsp. oharae , and Enterobacter hormaechei subsp. steigerwaltii are not Enterobacter hormaechei subspecies but belong to the same species ( Enterobacter xiangfangensis ). Enterobacter timonensis should be removed to Pseudenterobacter , a novel genus. We then reported two novel species, Enterobacter quasiroggenkampii and Enterobacter quasimori , by genome- and phenotype-based characterization. We also applied the updated taxonomy to curate 1,997 Enterobacter genomes in GenBank. Species identification was changed following our updated taxonomy for the majority of publicly available strains (1,542, 77.2%). The most common Enterobacter species was E. xiangfangensis . We identified 14 novel tentative Enterobacter genomospecies. This study highlights that updated and curated taxonomic assignments are the premise of correct identification. IMPORTANCE Enterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all subspecies assignments of Enterobacter were incorrect. Second, we characterized and reported two novel Enterobacter species with clinical significance. Third, we curated 1,997 Enterobacter genome sequences deposited in GenBank and found that the species identification of most Enterobacter strains needed to be corrected. Fourth, we found that the most common Enterobacter species seen in clinical samples is Enterobacter xiangfangensis rather than Enterobacter cloacae . Fifth, we identified 14 tentative novel Enterobacter and 18 tentative novel non- Enterobacter species. This study highlights that updated and curated taxonomic assignments are the premise of correct species identification. We recommend that future Enterobacter studies need to use the updated taxonomy to avoid misleading information.</abstract><cop>1752 N St., N.W., Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>32753511</pmid><doi>10.1128/mSystems.00527-20</doi><orcidid>https://orcid.org/0000-0002-5654-4256</orcidid><orcidid>https://orcid.org/0000-0002-7675-260X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-5077
ispartof mSystems, 2020-08, Vol.5 (4)
issn 2379-5077
2379-5077
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7406230
source American Society for Microbiology; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Ecological and Evolutionary Science
title Precise Species Identification for Enterobacter : a Genome Sequence-Based Study with Reporting of Two Novel Species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Species%20Identification%20for%20Enterobacter%20:%20a%20Genome%20Sequence-Based%20Study%20with%20Reporting%20of%20Two%20Novel%20Species,%20Enterobacter%20quasiroggenkampii%20sp.%20nov.%20and%20Enterobacter%20quasimori%20sp.%20nov&rft.jtitle=mSystems&rft.au=Wu,%20Wenjing&rft.date=2020-08-04&rft.volume=5&rft.issue=4&rft.issn=2379-5077&rft.eissn=2379-5077&rft_id=info:doi/10.1128/mSystems.00527-20&rft_dat=%3Cproquest_pubme%3E2430653064%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430653064&rft_id=info:pmid/32753511&rfr_iscdi=true