Ambient air pollution, meteorology, and COVID‐19 infection in Korea

The outbreak of novel pneumonia coronavirus disease has become a public health concern worldwide. Here, for the first time, the association between Korean meteorological factors and air pollutants and the COVID‐19 infection was investigated. Data of air pollutants, meteorological factors, and daily...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical virology 2021-02, Vol.93 (2), p.878-885
Hauptverfasser: Hoang, Tung, Tran, Tho Thi Anh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The outbreak of novel pneumonia coronavirus disease has become a public health concern worldwide. Here, for the first time, the association between Korean meteorological factors and air pollutants and the COVID‐19 infection was investigated. Data of air pollutants, meteorological factors, and daily COVID‐19 confirmed cases of seven metropolitan cities and nine provinces were obtained from 3 February 2020 to 5 May 2020 during the first wave of pandemic across Korea. We applied the generalized additive model to investigate the temporal relationship. There was a significantly nonlinear association between daily temperature and COVID‐19 confirmed cases. Each 1°C increase in temperature was associated with 9% (lag 0‐14; OR = 1.09; 95% CI = 1.03‐1.15) increase of COVID‐19 confirmed cases when the temperature was below 8°C. A 0.01 ppm increase in NO2 (lag 0‐7, lag 0.14, and lag 0‐21) was significantly associated with increases of COVID‐19 confirmed cases, with ORs (95% CIs) of 1.13 (1.02‐1.25), 1.19 (1.09‐1.30), and 1.30 (1.19‐1.41), respectively. A 0.1 ppm increase in CO (lag 0‐21) was associated with the increase in COVID‐19 confirmed cases (OR = 1.10, 95% CI = 1.04‐1.16). There was a positive association between per 0.001 ppm of SO2 concentration (lag 0, lag 0‐7, and lag 0‐14) and COVID‐19 confirmed cases, with ORs (95% CIs) of 1.13 (1.04‐1.22), 1.20 (1.11‐1.31), and 1.15 (1.07‐1.25), respectively. There were significantly temporal associations between temperature, NO2, CO, and SO2 concentrations and daily COVID‐19 confirmed cases in Korea. Highlights ‐ Data on air pollutants and meteorological factors from 16 cities and provinces in Korea were obtained. ‐ Temperature was associated with an increase of COVID‐19 confirmed cases when below 8oC. ‐ Positive associations between NO2, CO, and SO2 levels and COVID‐19 confirmed cases were observed.
ISSN:0146-6615
1096-9071
DOI:10.1002/jmv.26325