Synchronization of two cavity-coupled qubits measured by entanglement

Some nonlinear radiations such as superfluorescence can be understood as cooperative effects between atoms. We regard cooperative radiations as a manifested effect secondary to the intrinsic synchronization among the two-level atoms and propose the entanglement measure, concurrence, as a time-resolv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.12975-12975, Article 12975
Hauptverfasser: Huan, Tian-tian, Zhou, Ri-gui, Ian, Hou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some nonlinear radiations such as superfluorescence can be understood as cooperative effects between atoms. We regard cooperative radiations as a manifested effect secondary to the intrinsic synchronization among the two-level atoms and propose the entanglement measure, concurrence, as a time-resolved measure of synchronization. Modeled on two cavity-coupled qubits, the evolved concurrence monotonically increases to a saturated level. The finite duration required for the rising to saturation coincides with the time delay characteristic to the initiation of superfluorescence, showing the role of synchronization in establishing the cooperation among the qubits. We verify concurrence to be a good measure of synchronization by comparing it with asynchronicity computed from the difference between the density matrices of the qubits. We find that the feature of time delay agrees in both measures and is determined by the coupling regimes of the cavity-qubit interaction. Specifically, synchronization is impossible in the weak coupling regime.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-69903-1