Polypeptide formation in clusters of β-alanine amino acids by single ion impact
The formation of peptide bonds by energetic processing of amino acids is an important step towards the formation of biologically relevant molecules. As amino acids are present in space, scenarios have been developed to identify the roots of life on Earth, either by processes occurring in outer space...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-07, Vol.11 (1), p.3818-3818, Article 3818 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The formation of peptide bonds by energetic processing of amino acids is an important step towards the formation of biologically relevant molecules. As amino acids are present in space, scenarios have been developed to identify the roots of life on Earth, either by processes occurring in outer space or on Earth itself. We study the formation of peptide bonds in single collisions of low-energy He
2+
ions (
α
-particles) with loosely bound clusters of
β
-alanine molecules at impact energies typical for solar wind. Experimental fragmentation mass spectra produced by collisions are compared with results of molecular dynamics simulations and an exhaustive exploration of potential energy surfaces. We show that peptide bonds are efficiently formed by water molecule emission, leading to the formation of up to tetrapeptide. The present results show that a plausible route to polypeptides formation in space is the collision of energetic ions with small clusters of amino acids.
Formation of peptide bonds in cold gas-phase environments might represent a prebiotic synthesis route of polypeptides. Here, the authors show the formation of up to tetra-peptide species in the collision of He2+ ions, with kinetic energies typical for solar wind ions, with cold
β
-alanine clusters. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-17653-z |