Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery

A novel polymer host from carboxymethyl cellulose (CMC)/poly( N -isopropylacrylamide) (PNiPAM) was developed for a high safety solid polymer electrolyte (SPE) in a zinc ion battery. Effects of the PNiPAM loading level in the range of 0–40% by weight ( wt%) on the chemical, mechanical, thermal, and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.12587-12587, Article 12587
Hauptverfasser: Dueramae, Isala, Okhawilai, Manunya, Kasemsiri, Pornnapa, Uyama, Hiroshi, Kita, Rio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel polymer host from carboxymethyl cellulose (CMC)/poly( N -isopropylacrylamide) (PNiPAM) was developed for a high safety solid polymer electrolyte (SPE) in a zinc ion battery. Effects of the PNiPAM loading level in the range of 0–40% by weight ( wt%) on the chemical, mechanical, thermal, and morphological properties of the CMC/PNiPAMx films (where x is the wt% of PNiPAM) were symmetrically investigated. The obtained CMC/PNiPAMx films showed a high compatibility between the polymers. The CMC/PNiPAM20 blend showed the greatest tensile strength and modulus at 37.9 MPa and 2.1 GPa, respectively. Moreover, the thermal degradation of CMC was retarded by the addition of PNiPAM. Scanning electron microscopy images of CMC/PNiPAM20 revealed a porous structure that likely supported Zn 2+ movement in the SPEs containing zinc triflate, resulting in the high Zn 2+ ion transference number (0.56) and ionic conductivity (1.68 × 10 –4 S cm −1 ). Interestingly, the presence of PNiPAM in the CMC/PNiPAMx blends showed a greater stability during charge–discharge cyclic tests, indicating the ability of PNiPAM to suppress dendrite formation from causing a short circuit. The developed CMC/PNiPAM20 based SPE is a promising material for high ionic conductivity and stability in a Zn ion battery.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-69521-x