Narrow genetic base shapes population structure and linkage disequilibrium in an industrial oilseed crop, Brassica carinata A. Braun

Ethiopian mustard ( Brassica carinata A. Braun) is an emerging sustainable source of vegetable oil, in particular for the biofuel industry. The present study exploited genome assemblies of the Brassica diploids, Brassica nigra and Brassica oleracea, to discover over 10,000 genome-wide SNPs using gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.12629, Article 12629
Hauptverfasser: Khedikar, Yogendra, Clarke, Wayne E., Chen, Lifeng, Higgins, Erin E., Kagale, Sateesh, Koh, Chu Shin, Bennett, Rick, Parkin, Isobel A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ethiopian mustard ( Brassica carinata A. Braun) is an emerging sustainable source of vegetable oil, in particular for the biofuel industry. The present study exploited genome assemblies of the Brassica diploids, Brassica nigra and Brassica oleracea, to discover over 10,000 genome-wide SNPs using genotype by sequencing of 620 B. carinata lines. The analyses revealed a SNP frequency of one every 91.7 kb, a heterozygosity level of 0.30, nucleotide diversity levels of 1.31 × 10 −05 , and the first five principal components captured only 13% molecular variation, indicating low levels of genetic diversity among the B. carinata collection. Genome bias was observed, with greater SNP density found on the B subgenome. The 620 lines clustered into two distinct sub-populations (SP1 and SP2) with the majority of accessions (88%) clustered in SP1 with those from Ethiopia, the presumed centre of origin. SP2 was distinguished by a collection of breeding lines, implicating targeted selection in creating population structure. Two selective sweep regions on B3 and B8 were detected, which harbour genes involved in fatty acid and aliphatic glucosinolate biosynthesis, respectively. The assessment of genetic diversity, population structure, and LD in the global B. carinata collection provides critical information to assist future crop improvement.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-69255-w