Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP
The bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a wide range of cellular functions from biofilm formation to growth and survival. Targeting a second-messenger network is challenging because the system involves a multitude of components with often overlapping functions. Here, w...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-07, Vol.117 (29), p.17211-17220 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a wide range of cellular functions from biofilm formation to growth and survival. Targeting a second-messenger network is challenging because the system involves a multitude of components with often overlapping functions. Here, we present a strategy to intercept c-di-GMP signaling pathways by directly targeting the second messenger. For this, we developed a c-di-GMP–sequestering peptide (CSP) that was derived from a CheY-like c-di-GMP effector protein. CSP binds c-di-GMP with submicromolar affinity. The elucidation of the CSP·c-di-GMP complex structure by NMR identified a linear c-di-GMP–binding motif, in which a selfintercalated c-di-GMP dimer is tightly bound by a network of H bonds and π-stacking interactions involving arginine and aromatic residues. Structure-based mutagenesis yielded a variant with considerably higher, low-nanomolar affinity, which subsequently was shortened to 19 residues with almost uncompromised affinity. We demonstrate that endogenously expressed CSP intercepts c-di-GMP signaling and effectively inhibits biofilm formation in Pseudomonas aeruginosa, the most widely used model for serious biofilm-associated medical implications. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2001232117 |