MiR-146b-5p suppresses the malignancy of GSC/MSC fusion cells by targeting SMARCA5

Recent studies have confirmed that both cancer-associated bone marrow mesenchymal stem cells (BM-MSCs, MSCs) and glioma stem-like cells (GSCs) contribute to malignant progression of gliomas through their mutual interactions within the tumor microenvironment. However, the exact ways and relevant mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging (Albany, NY.) NY.), 2020-07, Vol.12 (13), p.13647-13667
Hauptverfasser: Wang, Haiyang, Tan, Liping, Dong, Xuchen, Liu, Liang, Jiang, Qianqian, Li, Haoran, Shi, Jia, Yang, Xuejun, Dai, Xingliang, Qian, Zhiyuan, Dong, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies have confirmed that both cancer-associated bone marrow mesenchymal stem cells (BM-MSCs, MSCs) and glioma stem-like cells (GSCs) contribute to malignant progression of gliomas through their mutual interactions within the tumor microenvironment. However, the exact ways and relevant mechanisms involved in the actions of GSCs and MSCs within the glioma microenvironment are not fully understood. Using a dual-color fluorescence tracing model, our studies revealed that GSCs are able to spontaneously fuse with MSCs, yielding GSC/MSC fusion cells, which exhibited markedly enhanced proliferation and invasiveness. MiR-146b-5p was downregulated in the GSC/MSC fusion cells, and its overexpression suppressed proliferation, migration and invasion by the fusion cells. SMARCA5, which is highly expressed in high-grade gliomas, was a direct downstream target of miR-146b-5p in the GSC/MSC fusion cells. miR-146b-5p inhibited SMARCA5 expression and inactivated a TGF-β pathway, thereby decreasing GSC/MSC fusion cell proliferation, migration and invasion. Collectively, these findings demonstrate that miR-146b-5p suppresses the malignant phenotype of GSC/MSC fusion cells in the glioma microenvironment by targeting a SMARCA5-regulated TGF-β pathway.
ISSN:1945-4589
1945-4589
DOI:10.18632/aging.103489