Adaptive ERK signalling activation in response to therapy and in silico prognostic evaluation of EGFR-MAPK in HNSCC
Background Head and neck squamous cell carcinoma (HNSCC) patients frequently develop treatment resistance to cetuximab, a monoclonal antibody against EGFR, as well as radiotherapy. Here we addressed extracellular signal-regulated kinase 1/2 (ERK1/2) regulation by cetuximab or fractionated irradiatio...
Gespeichert in:
Veröffentlicht in: | British journal of cancer 2020-07, Vol.123 (2), p.288-297 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Head and neck squamous cell carcinoma (HNSCC) patients frequently develop treatment resistance to cetuximab, a monoclonal antibody against EGFR, as well as radiotherapy. Here we addressed extracellular signal-regulated kinase 1/2 (ERK1/2) regulation by cetuximab or fractionated irradiation (IR) and conducted in silico prognostic evaluation of the EGFR-MAPK axis in HNSCC.
Methods
Expression of ERK1/2 phosphorylation (pERK1/2) was determined in HNSCC cell lines, which were treated with cetuximab or fractionated-IR. Furthermore, the effect of fractionated IR on pERK1/2 was confirmed in an ex vivo HNSCC tissue culture model. Expression and prognostic significance of EGFR-ERK axis was evaluated in a cohort of radiotherapy plus cetuximab-treated HNSCC. Correlations among EGFR-MAPK signalling components and association between transcript and protein expression profiles and patient survival in HNSCC were analysed using publicly available databases.
Results
ERK1/2 phosphorylation was rebounded by prolonged cetuximab administration and was induced by fractionated IR, which could be suppressed by a MEK inhibitor as a radiosensitiser. In silico assessments suggested that EGFR-MAPK cascade genes and proteins could predict HNSCC patients’ survival as a prognostic signature.
Conclusions
Activation of ERK1/2 signalling contributes to the cellular defence of HNSCC against cetuximab and fractionated IR treatment. EGFR-MAPK axis has a prognostic significance in HNSCC. |
---|---|
ISSN: | 0007-0920 1532-1827 |
DOI: | 10.1038/s41416-020-0892-9 |