A meta-analysis of multiple stressors on seagrasses in the context of marine spatial cumulative impacts assessment
Humans are placing more strain on the world’s oceans than ever before. Furthermore, marine ecosystems are seldom subjected to single stressors, rather they are frequently exposed to multiple, concurrent stressors. When the combined effect of these stressors is calculated and mapped through cumulativ...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-07, Vol.10 (1), p.11934-11934, Article 11934 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Humans are placing more strain on the world’s oceans than ever before. Furthermore, marine ecosystems are seldom subjected to single stressors, rather they are frequently exposed to multiple, concurrent stressors. When the combined effect of these stressors is calculated and mapped through cumulative impact assessments, it is often assumed that the effects are additive. However, there is increasing evidence that different combinations of stressors can have non-additive impacts, potentially leading to synergistic and unpredictable impacts on ecosystems. Accurately predicting how stressors interact is important in conservation, as removal of certain stressors could provide a greater benefit, or be more detrimental than would be predicted by an additive model. Here, we conduct a meta-analysis to assess the prevalence of additive, synergistic, and antagonistic stressor interaction effects using seagrasses as case study ecosystems. We found that additive interactions were the most commonly reported in seagrass studies. Synergistic and antagonistic interactions were also common, but there was no clear way of predicting where these non-additive interactions occurred. More studies which synthesise the results of stressor interactions are needed to be able to generalise interactions across ecosystem types, which can then be used to improve models for assessing cumulative impacts. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-68801-w |