Nintedanib Reduces Neutrophil Chemotaxis via Activating GRK2 in Bleomycin-Induced Pulmonary Fibrosis

Neutrophils are involved in the alveolitis of idiopathic pulmonary fibrosis (IPF). However, their pathogenic mechanisms are still poorly understood. Nintedanib has antifibrotic and anti-inflammatory activity in IPF. This study aimed to investigate the regulatory mechanism of nintedanib on neutrophil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-07, Vol.21 (13), p.4735
Hauptverfasser: Chen, Wei-Chih, Chen, Nien-Jung, Chen, Hsin-Pai, Yu, Wen-Kuang, Su, Vincent Yi-Fong, Chen, Hao, Wu, Huai-Hsuan, Yang, Kuang-Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neutrophils are involved in the alveolitis of idiopathic pulmonary fibrosis (IPF). However, their pathogenic mechanisms are still poorly understood. Nintedanib has antifibrotic and anti-inflammatory activity in IPF. This study aimed to investigate the regulatory mechanism of nintedanib on neutrophil chemotaxis in bleomycin (BLM)-induced pulmonary fibrosis. Nintedanib was administered via oral gavage to male C57BL/6 mice 24 h after a bleomycin intratracheal injection (1.5 U/kg). Lung histopathological findings, the expression of cytokines, and the regulatory signaling pathways of neutrophil chemotaxis were analyzed. The effect of nintedanib was also investigated in a mouse model with adoptive neutrophil transfer in vivo. Nintedanib significantly decreased the histopathological changes and neutrophil recruitment in BLM-induced pulmonary fibrosis. Nintedanib mediated a downregulation of chemokine (C-X-C motif) receptor 2 (CXCR2) and very late antigen 4 (VLA-4) expression, as well as an upregulation of G protein-coupled receptor kinase 2 (GRK2) activity in peripheral blood neutrophils in BLM-induced pulmonary fibrosis. Nintedanib also decreased the activation of endothelial cells by the decreased expression of vascular cell adhesion molecule 1 (VCAM-1). The effect of nintedanib on regulating neutrophil chemotaxis was also confirmed by a mouse model with adoptive neutrophil transfer in vivo. In conclusion, nintedanib reduces neutrophil chemotaxis and endothelial cell activation to regulate the severity of BLM-induced pulmonary fibrosis. These effects are associated with an enhancement of GRK2 activity and a reduction in CXCR2 and VLA-4 expression on neutrophils and a decrease in VCAM-1 expression on endothelial cells.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21134735