Shielded Silver Nanorods for Bioapplications
Silver is arguably the best plasmonic material in terms of optical performance. However, wide application of Ag and Ag-containing nanoparticles is usually hindered by two major drawbacks, namely, chemical degradation and cytotoxicity. We report herein a synthetic method for highly monodisperse polym...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2020-07, Vol.32 (13), p.5879-5889 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silver is arguably the best plasmonic material in terms of optical performance. However, wide application of Ag and Ag-containing nanoparticles is usually hindered by two major drawbacks, namely, chemical degradation and cytotoxicity. We report herein a synthetic method for highly monodisperse polymer-coated Ag nanorods, which are thereby protected against external stimuli (oxidation, light, heat) and are noncytotoxic to various cell lines. The monodispersity of Ag nanorods endows them with narrow plasmon bands, which are tunable into the near-infrared biological transparency window, thus facilitating application in bioanalytical and therapeutic techniques. We demonstrate intracellular surface-enhanced Raman scattering (SERS) imaging using Ag nanorods encoded with five different Raman reporter molecules. Encoded Ag nanorods display long-term stability in terms of size, shape, optical response, and SERS signal. Our results help eliminate concerns of instability and cytotoxicity in the application of Ag-containing nanoparticles with enhanced optical response, toward the development of bioapplications. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.0c01995 |