Crosslinked Sulfonated Polyphenylsulfone-Vinylon (CSPPSU-vinylon) Membranes for PEM Fuel Cells from SPPSU and Polyvinyl Alcohol (PVA)

A crosslinked sulfonated polyphenylsulfone (CSPPSU) polymer and polyvinyl alcohol (PVA) were thermally crosslinked; then, a CSPPSU-vinylon membrane was synthesized using a formalization reaction. Its use as an electrolyte membrane for fuel cells was investigated. PVA was synthesized from polyvinyl a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2020-06, Vol.12 (6), p.1354
Hauptverfasser: Kim, Je-Deok, Matsushita, Satoshi, Tamura, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A crosslinked sulfonated polyphenylsulfone (CSPPSU) polymer and polyvinyl alcohol (PVA) were thermally crosslinked; then, a CSPPSU-vinylon membrane was synthesized using a formalization reaction. Its use as an electrolyte membrane for fuel cells was investigated. PVA was synthesized from polyvinyl acetate (PVAc), using a saponification reaction. The CSPPSU-vinylon membrane was synthesized by the addition of PVA (5 wt%, 10 wt%, 20 wt%), and its chemical, mechanical, conductivity, and fuel cell properties were studied. The conductivity of the CSPPSU-10vinylon membrane is higher than that of the CSPPSU membrane, and a conductivity of 66 mS/cm was obtained at 120 °C and 90% RH (relative humidity). From a fuel cell evaluation at 80 °C, the CSPPSU-10vinylon membrane has a higher current density than CSPPSU and Nafion212 membranes, in both high (100% RH) and low humidification (60% RH). By using a CSPPSU-vinylon membrane instead of a CSPPSU membrane, the conductivity and fuel cell performance improved.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym12061354