Integrating drone-borne thermal imaging with artificial intelligence to locate bird nests on agricultural land

In conservation, the use of unmanned aerial vehicles (drones) carrying various sensors and the use of deep learning are increasing, but they are typically used independently of each other. Untapping their large potential requires integrating these tools. We combine drone-borne thermal imaging with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.10993-10993, Article 10993
Hauptverfasser: Santangeli, Andrea, Chen, Yuxuan, Kluen, Edward, Chirumamilla, Raviteja, Tiainen, Juha, Loehr, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In conservation, the use of unmanned aerial vehicles (drones) carrying various sensors and the use of deep learning are increasing, but they are typically used independently of each other. Untapping their large potential requires integrating these tools. We combine drone-borne thermal imaging with artificial intelligence to locate ground-nests of birds on agricultural land. We show, for the first time, that this semi-automated system can identify nests with a high performance. However, local weather, type of arable field and height of the drone can affect performance. The results’ implications are particularly relevant to conservation practitioners working across sectors, such as biodiversity conservation and food production in farmland. Under a rapidly changing world, studies like this can help uncover the potential of technology for conservation and embrace cross-sectoral transformations from the onset; for example, by integrating nest detection within the precision agriculture system that heavily relies on drone-borne sensors.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-67898-3