Artificial intelligence in prediction of mental health disorders induced by the COVID-19 pandemic among health care workers

The coronavirus disease 2019 (COVID-19) pandemic and its immediate aftermath present a serious threat to the mental health of health care workers (HCWs), who may develop elevated rates of anxiety, depression, posttraumatic stress disorder, or even suicidal behaviors. Therefore, the aim of this artic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Croatian medical journal 2020-06, Vol.61 (3), p.279-288
Hauptverfasser: Ćosić, Krešimir, Popović, Siniša, Šarlija, Marko, Kesedžić, Ivan, Jovanovic, Tanja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The coronavirus disease 2019 (COVID-19) pandemic and its immediate aftermath present a serious threat to the mental health of health care workers (HCWs), who may develop elevated rates of anxiety, depression, posttraumatic stress disorder, or even suicidal behaviors. Therefore, the aim of this article is to address the problem of prevention of HCWs’ mental health disorders by early prediction of individuals at a higher risk of later chronic mental health disorders due to high distress during the COVID-19 pandemic. The article proposes a methodology for prediction of mental health disorders induced by the pandemic, which includes: Phase 1) objective assessment of the intensity of HCWs’ stressor exposure, based on information retrieved from hospital archives and clinical records; Phase 2) subjective self-report assessment of stress during the COVID-19 pandemic experienced by HCWs and their relevant psychological traits; Phase 3) design and development of appropriate multimodal stimulation paradigms to optimally elicit specific neuro-physiological reactions; Phase 4) objective measurement and computation of relevant neuro-physiological predictor features based on HCWs’ reactions; and Phase 5) statistical and machine learning analysis of highly heterogeneous data sets obtained in previous phases. The proposed methodology aims to expand traditionally used subjective self-report predictors of mental health disorders with more objective metrics, which is aligned with the recent literature related to predictive modeling based on artificial intelligence. This approach is generally applicable to all those exposed to high levels of stress during the COVID-19 pandemic and might assist mental health practitioners to make diagnoses more quickly and accurately.
ISSN:0353-9504
1332-8166
DOI:10.3325/cmj.2020.61.279