Neutrophil Extracellular Traps (NETs) Promote Pro-Metastatic Phenotype in Human Breast Cancer Cells through Epithelial–Mesenchymal Transition

Neutrophil extracellular traps (NETs) have been associated with several steps of tumor progression, including primary growth and metastasis. One of the key features for the acquisition of the metastatic ability is the epithelial–mesenchymal transition (EMT), a complex cellular program. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2020-06, Vol.12 (6), p.1542
Hauptverfasser: Martins-Cardoso, Karina, Almeida, Vitor H., Bagri, Kayo M., Rossi, Maria Isabel Doria, Mermelstein, Claudia S., König, Sandra, Monteiro, Robson Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neutrophil extracellular traps (NETs) have been associated with several steps of tumor progression, including primary growth and metastasis. One of the key features for the acquisition of the metastatic ability is the epithelial–mesenchymal transition (EMT), a complex cellular program. In this study, we evaluated the ability of isolated NETs in modulating the pro-metastatic phenotype of human breast cancer cells. Tumor cells were treated with isolated NETs and then samples were generated for cell migration, quantitative RT-PCR, western blotting, immunofluorescence, and flow cytometry assays. RNA-seq data from The Cancer Genome Atlas (TCGA) database were assessed. NETs changed the typical epithelial morphology of MCF7 cells into a mesenchymal phenotype, a process that was accompanied by enhanced migratory properties. Additional EMT traits were observed: increased expression of N-cadherin and fibronectin, while the E-cadherin expression was repressed. Notably, NETs positively regulated the gene expression of several factors linked to the pro-inflammatory and pro-metastatic properties. Analyses of TCGA data showed that samples from breast cancer patients exhibit a significant correlation between pro-tumoral and neutrophil signature gene expression, including several EMT and pro-metastatic factors. Therefore, NETs drive pro-metastatic phenotype in human breast cancer cells through the activation of the EMT program.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers12061542