Atmospheric and Marine Corrosion of PEO and Composite Coatings Obtained on Al-Cu-Mg Aluminum Alloy

Wrought Al-Cu-Mg aluminum alloy (D16) was treated by bipolar plasma electrolytic oxidation to create a base plasma electrolytic oxidation (PEO)-coating with corrosion protection and mechanical properties superior to bare alloy’s natural oxide layer. Additional protection was provided by the applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-06, Vol.13 (12), p.2739
Hauptverfasser: Egorkin, Vladimir S., Medvedev, Ivan M., Sinebryukhov, Sergey L., Vyaliy, Igor E., Gnedenkov, Andrey S., Nadaraia, Konstantine V., Izotov, Nikolaj V., Mashtalyar, Dmitriy V., Gnedenkov, Sergey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wrought Al-Cu-Mg aluminum alloy (D16) was treated by bipolar plasma electrolytic oxidation to create a base plasma electrolytic oxidation (PEO)-coating with corrosion protection and mechanical properties superior to bare alloy’s natural oxide layer. Additional protection was provided by the application of polymer, thus creating a composite coating. Electrochemical and scratch tests, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction studies were performed. Degradation of coatings in the marine atmosphere and seawater was evaluated. The composite polymer-containing coating provided better corrosion protection of aluminum alloy compared to the PEO-coating, although seawater affected both. During the atmospheric exposure, the PEO-coating provided reasonably good protection, and the composite coating showed excellent performance.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13122739