Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions

We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N -particle system of bosons. We consider the interaction potential to be given either by W β ( x ) = N - 1 + 2 β W ( N β x ) , for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019, Vol.372 (1), p.1-69
Hauptverfasser: Jeblick, Maximilian, Leopold, Nikolai, Pickl, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N -particle system of bosons. We consider the interaction potential to be given either by W β ( x ) = N - 1 + 2 β W ( N β x ) , for any β > 0 , or to be given by V N ( x ) = e 2 N V ( e N x ) , for some spherical symmetric, nonnegative and compactly supported W , V ∈ L ∞ ( R 2 , R ) . In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential V N we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-019-03599-x