Geometric regulation of histone state directs melanoma reprogramming

Malignant melanoma displays a high degree of cellular plasticity during disease progression. Signals in the tumor microenvironment are believed to influence melanoma plasticity through changes in the epigenetic state to guide dynamic differentiation and de-differentiation. Here we uncover a relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-07, Vol.3 (1), p.341-341, Article 341
Hauptverfasser: Lee, Junmin, Molley, Thomas G., Seward, Christopher H., Abdeen, Amr A., Zhang, Huimin, Wang, Xiaochun, Gandhi, Hetvi, Yang, Jia-Lin, Gaus, Katharina, Kilian, Kristopher A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malignant melanoma displays a high degree of cellular plasticity during disease progression. Signals in the tumor microenvironment are believed to influence melanoma plasticity through changes in the epigenetic state to guide dynamic differentiation and de-differentiation. Here we uncover a relationship between geometric features at perimeter regions of melanoma aggregates, and reprogramming to a stem cell-like state through histone marks H3K4Me2 and H3K9Ac. Using an in vitro tumor microengineering approach, we find spatial enrichment of these histone modifications with concurrent expression of stemness markers. The epigenetic modifier PRDM14 overlaps with H3K9Ac and shows elevated expression in cells along regions of perimeter curvature. siRNA knockdown of PRDM14 abolishes the MIC phenotype suggesting a role in regulating melanoma heterogeneity. Our results suggest mechanotransduction at the periphery of melanoma aggregates may orchestrate the activity of epigenetic modifiers to regulate histone state, cellular plasticity, and tumorigenicity. Junmin Lee et al. study the role of geometric features at the perimeter regions of melanoma aggregates in programming stem cell-like state through histone marks. They use a tumor microengineering approach in vitro and report a spatial enrichment of histone modifications with stemness markers. Their work uncovers a mechanotransduction signaling that regulates epigenetic modifiers to regulate tumorigenicity.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-020-1067-1