Reducing the Impact of Perfusion Medical Waste on the Environment

The U.S. healthcare system generates more than five billion pounds of waste each year. Waste disposal has become a serious environmental problem facing healthcare institutions. The operating room is the second largest source of hospital waste, and no current standards exist regarding perfusion waste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of extra-corporeal technology 2020-06, Vol.52 (2), p.135-141
Hauptverfasser: Wisniewski, Andrea, Zimmerman, Matt, Crews, Jr, Tyrone, Haulbrook, Alex, Fitzgerald, David C, Sistino, Joseph J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The U.S. healthcare system generates more than five billion pounds of waste each year. Waste disposal has become a serious environmental problem facing healthcare institutions. The operating room is the second largest source of hospital waste, and no current standards exist regarding perfusion waste reuse or recycling. A typical perfusion circuit produces approximately 15 pounds of plastic that ends up incinerated once used. Contaminated perfusion circuits consisting primarily of polyvinyl chloride (PVC) and polycarbonate are difficult to sterilize, reuse, or recycle. A literature review of Internet-based and peer-reviewed publications was conducted to identify all resources that describe sterilizing, dechlorinating, reusing, and recycling of medical-grade disposable products. There are several chemical methods available to re-harvest PVC after it has been properly decontaminated and melted down. Dichlorination by near-critical methanol shows promise in the recovery of additives such as plasticizers, stabilizers, and lubricants. The reinjection of PVC may have ecological and economic advantages. Dechlorinated PVC also creates a less toxic by-product when incinerated. Although this process is not recycling, it lessens the impact of poisonous chlorine gas release into the atmosphere. Sterilizing, dechlorinating, and recycling the perfusion circuit may be a promising avenue for reducing the ecological impact of perfusion waste. Although an economically sensitive mode of reusing, reducing, and recycling a circuit does not currently exist, this presentation will explore the perfusion waste dilemma and present potential solutions in hopes of promoting future reuse and recycling opportunities.
ISSN:0022-1058
DOI:10.1182/ject-1900023