Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption
Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-07, Vol.10 (1), p.10914, Article 10914 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 10914 |
container_title | Scientific reports |
container_volume | 10 |
creator | Chang, Bo Yoon Lee, Seul Ki Kim, Da Eun Bae, Jin Hye Ho, Thanh Tam Park, So-Young Lee, Mi Kyeong Kim, Sung Yeon |
description | Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of
Echinacea purpurea
resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide (
1
), a polyacetylene (
2
) and a lignan (
3
) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound
1
) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast—specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK–c-Fos–NFATC1 cascade. |
doi_str_mv | 10.1038/s41598-020-67890-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419547051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-44adc885f5e535be4da495df3b39b29b8febdc2638a3dc8ee4cd03faf44bfebc3</originalsourceid><addsrcrecordid>eNp9UU1vEzEQtRCIVqV_gAOyxAUOW_y52b0goSpApSAucLb8Mc66JHawN1W58suZNqUtFyxbM9Z788aeR8hLzs44k8O7prgeh44J1vWLYWTd9RNyLJjSnZBCPH2UH5HT1i4ZLi1Gxcfn5EiKnveDkMfk9zJG8DMtkYKfUrabH3abAlA8eU4xQaCxli1d3qIeLN3tK25M3qzO3tIvBbKfaMl0nrAqT8mlOeEVFUubofiNbXNZQ4aWGrU5UFcy0Aqt1N0N8wV5Fu2mweldPCHfPy6_nX_uVl8_XZx_WHVecz53Stngh0FHDVpqBypYNeoQpZOjE6MbIrjgRS8HK5EIoHxgMtqolEPIyxPy_qC727stBI__q3ZjdjVtbf1lik3mXySnyazLlVlIyftRocDrO4Fafu6hzeay7CuOrBmBc9VqwTRHljiwfC2tVYj3HTgzN9aZg3UGrTO31plrLHr1-G33JX-NQoI8EBpCeQ31ofd_ZP8AoYaphQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419547051</pqid></control><display><type>article</type><title>Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chang, Bo Yoon ; Lee, Seul Ki ; Kim, Da Eun ; Bae, Jin Hye ; Ho, Thanh Tam ; Park, So-Young ; Lee, Mi Kyeong ; Kim, Sung Yeon</creator><creatorcontrib>Chang, Bo Yoon ; Lee, Seul Ki ; Kim, Da Eun ; Bae, Jin Hye ; Ho, Thanh Tam ; Park, So-Young ; Lee, Mi Kyeong ; Kim, Sung Yeon</creatorcontrib><description>Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of
Echinacea purpurea
resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide (
1
), a polyacetylene (
2
) and a lignan (
3
) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound
1
) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast—specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK–c-Fos–NFATC1 cascade.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-67890-x</identifier><identifier>PMID: 32616823</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436/2388 ; 631/443/63 ; Animals ; Anti-Inflammatory Agents - isolation & purification ; Anti-Inflammatory Agents - pharmacology ; Antioxidants - isolation & purification ; Antioxidants - pharmacology ; Bone Density Conservation Agents - isolation & purification ; Bone Density Conservation Agents - pharmacology ; Bone resorption ; Bone Resorption - drug therapy ; Bone Resorption - prevention & control ; c-Fos protein ; Drug Evaluation, Preclinical ; Echinacea - chemistry ; Echinacea purpurea ; Fractionation ; Gene expression ; Gene Expression Regulation - drug effects ; Humanities and Social Sciences ; Kinases ; Macrophages - drug effects ; Macrophages - metabolism ; MAP kinase ; MAP Kinase Signaling System - drug effects ; Metabolites ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; NFATC Transcription Factors - drug effects ; NFATC Transcription Factors - metabolism ; Nitric Oxide - biosynthesis ; Osteoclastogenesis ; Osteoclasts ; Osteogenesis - drug effects ; Phosphorylation ; Phosphorylation - drug effects ; Phytotherapy ; Plant Roots - chemistry ; Polyacetylene ; Protein Processing, Post-Translational - drug effects ; RANK Ligand - pharmacology ; RAW 264.7 Cells ; Science ; Science (multidisciplinary) ; Secondary metabolites ; Toxicity ; TRANCE protein ; Transcription activation ; Transcription factors ; Transcription, Genetic - drug effects ; Tumor Necrosis Factor-alpha - biosynthesis ; Tumor Necrosis Factor-alpha - genetics</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.10914, Article 10914</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-44adc885f5e535be4da495df3b39b29b8febdc2638a3dc8ee4cd03faf44bfebc3</citedby><cites>FETCH-LOGICAL-c511t-44adc885f5e535be4da495df3b39b29b8febdc2638a3dc8ee4cd03faf44bfebc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331694/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331694/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,41107,42176,51563,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32616823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Bo Yoon</creatorcontrib><creatorcontrib>Lee, Seul Ki</creatorcontrib><creatorcontrib>Kim, Da Eun</creatorcontrib><creatorcontrib>Bae, Jin Hye</creatorcontrib><creatorcontrib>Ho, Thanh Tam</creatorcontrib><creatorcontrib>Park, So-Young</creatorcontrib><creatorcontrib>Lee, Mi Kyeong</creatorcontrib><creatorcontrib>Kim, Sung Yeon</creatorcontrib><title>Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of
Echinacea purpurea
resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide (
1
), a polyacetylene (
2
) and a lignan (
3
) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound
1
) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast—specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK–c-Fos–NFATC1 cascade.</description><subject>631/154/436/2388</subject><subject>631/443/63</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents - isolation & purification</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Antioxidants - isolation & purification</subject><subject>Antioxidants - pharmacology</subject><subject>Bone Density Conservation Agents - isolation & purification</subject><subject>Bone Density Conservation Agents - pharmacology</subject><subject>Bone resorption</subject><subject>Bone Resorption - drug therapy</subject><subject>Bone Resorption - prevention & control</subject><subject>c-Fos protein</subject><subject>Drug Evaluation, Preclinical</subject><subject>Echinacea - chemistry</subject><subject>Echinacea purpurea</subject><subject>Fractionation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>NFATC Transcription Factors - drug effects</subject><subject>NFATC Transcription Factors - metabolism</subject><subject>Nitric Oxide - biosynthesis</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteogenesis - drug effects</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Phytotherapy</subject><subject>Plant Roots - chemistry</subject><subject>Polyacetylene</subject><subject>Protein Processing, Post-Translational - drug effects</subject><subject>RANK Ligand - pharmacology</subject><subject>RAW 264.7 Cells</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Secondary metabolites</subject><subject>Toxicity</subject><subject>TRANCE protein</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Tumor Necrosis Factor-alpha - biosynthesis</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1vEzEQtRCIVqV_gAOyxAUOW_y52b0goSpApSAucLb8Mc66JHawN1W58suZNqUtFyxbM9Z788aeR8hLzs44k8O7prgeh44J1vWLYWTd9RNyLJjSnZBCPH2UH5HT1i4ZLi1Gxcfn5EiKnveDkMfk9zJG8DMtkYKfUrabH3abAlA8eU4xQaCxli1d3qIeLN3tK25M3qzO3tIvBbKfaMl0nrAqT8mlOeEVFUubofiNbXNZQ4aWGrU5UFcy0Aqt1N0N8wV5Fu2mweldPCHfPy6_nX_uVl8_XZx_WHVecz53Stngh0FHDVpqBypYNeoQpZOjE6MbIrjgRS8HK5EIoHxgMtqolEPIyxPy_qC727stBI__q3ZjdjVtbf1lik3mXySnyazLlVlIyftRocDrO4Fafu6hzeay7CuOrBmBc9VqwTRHljiwfC2tVYj3HTgzN9aZg3UGrTO31plrLHr1-G33JX-NQoI8EBpCeQ31ofd_ZP8AoYaphQ</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Chang, Bo Yoon</creator><creator>Lee, Seul Ki</creator><creator>Kim, Da Eun</creator><creator>Bae, Jin Hye</creator><creator>Ho, Thanh Tam</creator><creator>Park, So-Young</creator><creator>Lee, Mi Kyeong</creator><creator>Kim, Sung Yeon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20200702</creationdate><title>Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption</title><author>Chang, Bo Yoon ; Lee, Seul Ki ; Kim, Da Eun ; Bae, Jin Hye ; Ho, Thanh Tam ; Park, So-Young ; Lee, Mi Kyeong ; Kim, Sung Yeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-44adc885f5e535be4da495df3b39b29b8febdc2638a3dc8ee4cd03faf44bfebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/154/436/2388</topic><topic>631/443/63</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents - isolation & purification</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Antioxidants - isolation & purification</topic><topic>Antioxidants - pharmacology</topic><topic>Bone Density Conservation Agents - isolation & purification</topic><topic>Bone Density Conservation Agents - pharmacology</topic><topic>Bone resorption</topic><topic>Bone Resorption - drug therapy</topic><topic>Bone Resorption - prevention & control</topic><topic>c-Fos protein</topic><topic>Drug Evaluation, Preclinical</topic><topic>Echinacea - chemistry</topic><topic>Echinacea purpurea</topic><topic>Fractionation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>NFATC Transcription Factors - drug effects</topic><topic>NFATC Transcription Factors - metabolism</topic><topic>Nitric Oxide - biosynthesis</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteogenesis - drug effects</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Phytotherapy</topic><topic>Plant Roots - chemistry</topic><topic>Polyacetylene</topic><topic>Protein Processing, Post-Translational - drug effects</topic><topic>RANK Ligand - pharmacology</topic><topic>RAW 264.7 Cells</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Secondary metabolites</topic><topic>Toxicity</topic><topic>TRANCE protein</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Tumor Necrosis Factor-alpha - biosynthesis</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Bo Yoon</creatorcontrib><creatorcontrib>Lee, Seul Ki</creatorcontrib><creatorcontrib>Kim, Da Eun</creatorcontrib><creatorcontrib>Bae, Jin Hye</creatorcontrib><creatorcontrib>Ho, Thanh Tam</creatorcontrib><creatorcontrib>Park, So-Young</creatorcontrib><creatorcontrib>Lee, Mi Kyeong</creatorcontrib><creatorcontrib>Kim, Sung Yeon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Bo Yoon</au><au>Lee, Seul Ki</au><au>Kim, Da Eun</au><au>Bae, Jin Hye</au><au>Ho, Thanh Tam</au><au>Park, So-Young</au><au>Lee, Mi Kyeong</au><au>Kim, Sung Yeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-07-02</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10914</spage><pages>10914-</pages><artnum>10914</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of
Echinacea purpurea
resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide (
1
), a polyacetylene (
2
) and a lignan (
3
) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound
1
) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast—specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK–c-Fos–NFATC1 cascade.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32616823</pmid><doi>10.1038/s41598-020-67890-x</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-07, Vol.10 (1), p.10914, Article 10914 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331694 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/154/436/2388 631/443/63 Animals Anti-Inflammatory Agents - isolation & purification Anti-Inflammatory Agents - pharmacology Antioxidants - isolation & purification Antioxidants - pharmacology Bone Density Conservation Agents - isolation & purification Bone Density Conservation Agents - pharmacology Bone resorption Bone Resorption - drug therapy Bone Resorption - prevention & control c-Fos protein Drug Evaluation, Preclinical Echinacea - chemistry Echinacea purpurea Fractionation Gene expression Gene Expression Regulation - drug effects Humanities and Social Sciences Kinases Macrophages - drug effects Macrophages - metabolism MAP kinase MAP Kinase Signaling System - drug effects Metabolites Mice Mice, Inbred C57BL multidisciplinary NFATC Transcription Factors - drug effects NFATC Transcription Factors - metabolism Nitric Oxide - biosynthesis Osteoclastogenesis Osteoclasts Osteogenesis - drug effects Phosphorylation Phosphorylation - drug effects Phytotherapy Plant Roots - chemistry Polyacetylene Protein Processing, Post-Translational - drug effects RANK Ligand - pharmacology RAW 264.7 Cells Science Science (multidisciplinary) Secondary metabolites Toxicity TRANCE protein Transcription activation Transcription factors Transcription, Genetic - drug effects Tumor Necrosis Factor-alpha - biosynthesis Tumor Necrosis Factor-alpha - genetics |
title | Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20echinalkamide%20identified%20from%20Echinacea%20purpurea%20(L.)%20Moench%20on%20the%20inhibition%20of%20osteoclastogenesis%20and%20bone%20resorption&rft.jtitle=Scientific%20reports&rft.au=Chang,%20Bo%20Yoon&rft.date=2020-07-02&rft.volume=10&rft.issue=1&rft.spage=10914&rft.pages=10914-&rft.artnum=10914&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-67890-x&rft_dat=%3Cproquest_pubme%3E2419547051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419547051&rft_id=info:pmid/32616823&rfr_iscdi=true |