Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption

Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.10914, Article 10914
Hauptverfasser: Chang, Bo Yoon, Lee, Seul Ki, Kim, Da Eun, Bae, Jin Hye, Ho, Thanh Tam, Park, So-Young, Lee, Mi Kyeong, Kim, Sung Yeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 10914
container_title Scientific reports
container_volume 10
creator Chang, Bo Yoon
Lee, Seul Ki
Kim, Da Eun
Bae, Jin Hye
Ho, Thanh Tam
Park, So-Young
Lee, Mi Kyeong
Kim, Sung Yeon
description Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide ( 1 ), a polyacetylene ( 2 ) and a lignan ( 3 ) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound 1 ) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast—specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK–c-Fos–NFATC1 cascade.
doi_str_mv 10.1038/s41598-020-67890-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419547051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-44adc885f5e535be4da495df3b39b29b8febdc2638a3dc8ee4cd03faf44bfebc3</originalsourceid><addsrcrecordid>eNp9UU1vEzEQtRCIVqV_gAOyxAUOW_y52b0goSpApSAucLb8Mc66JHawN1W58suZNqUtFyxbM9Z788aeR8hLzs44k8O7prgeh44J1vWLYWTd9RNyLJjSnZBCPH2UH5HT1i4ZLi1Gxcfn5EiKnveDkMfk9zJG8DMtkYKfUrabH3abAlA8eU4xQaCxli1d3qIeLN3tK25M3qzO3tIvBbKfaMl0nrAqT8mlOeEVFUubofiNbXNZQ4aWGrU5UFcy0Aqt1N0N8wV5Fu2mweldPCHfPy6_nX_uVl8_XZx_WHVecz53Stngh0FHDVpqBypYNeoQpZOjE6MbIrjgRS8HK5EIoHxgMtqolEPIyxPy_qC727stBI__q3ZjdjVtbf1lik3mXySnyazLlVlIyftRocDrO4Fafu6hzeay7CuOrBmBc9VqwTRHljiwfC2tVYj3HTgzN9aZg3UGrTO31plrLHr1-G33JX-NQoI8EBpCeQ31ofd_ZP8AoYaphQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419547051</pqid></control><display><type>article</type><title>Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chang, Bo Yoon ; Lee, Seul Ki ; Kim, Da Eun ; Bae, Jin Hye ; Ho, Thanh Tam ; Park, So-Young ; Lee, Mi Kyeong ; Kim, Sung Yeon</creator><creatorcontrib>Chang, Bo Yoon ; Lee, Seul Ki ; Kim, Da Eun ; Bae, Jin Hye ; Ho, Thanh Tam ; Park, So-Young ; Lee, Mi Kyeong ; Kim, Sung Yeon</creatorcontrib><description>Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide ( 1 ), a polyacetylene ( 2 ) and a lignan ( 3 ) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound 1 ) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast—specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK–c-Fos–NFATC1 cascade.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-67890-x</identifier><identifier>PMID: 32616823</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436/2388 ; 631/443/63 ; Animals ; Anti-Inflammatory Agents - isolation &amp; purification ; Anti-Inflammatory Agents - pharmacology ; Antioxidants - isolation &amp; purification ; Antioxidants - pharmacology ; Bone Density Conservation Agents - isolation &amp; purification ; Bone Density Conservation Agents - pharmacology ; Bone resorption ; Bone Resorption - drug therapy ; Bone Resorption - prevention &amp; control ; c-Fos protein ; Drug Evaluation, Preclinical ; Echinacea - chemistry ; Echinacea purpurea ; Fractionation ; Gene expression ; Gene Expression Regulation - drug effects ; Humanities and Social Sciences ; Kinases ; Macrophages - drug effects ; Macrophages - metabolism ; MAP kinase ; MAP Kinase Signaling System - drug effects ; Metabolites ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; NFATC Transcription Factors - drug effects ; NFATC Transcription Factors - metabolism ; Nitric Oxide - biosynthesis ; Osteoclastogenesis ; Osteoclasts ; Osteogenesis - drug effects ; Phosphorylation ; Phosphorylation - drug effects ; Phytotherapy ; Plant Roots - chemistry ; Polyacetylene ; Protein Processing, Post-Translational - drug effects ; RANK Ligand - pharmacology ; RAW 264.7 Cells ; Science ; Science (multidisciplinary) ; Secondary metabolites ; Toxicity ; TRANCE protein ; Transcription activation ; Transcription factors ; Transcription, Genetic - drug effects ; Tumor Necrosis Factor-alpha - biosynthesis ; Tumor Necrosis Factor-alpha - genetics</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.10914, Article 10914</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-44adc885f5e535be4da495df3b39b29b8febdc2638a3dc8ee4cd03faf44bfebc3</citedby><cites>FETCH-LOGICAL-c511t-44adc885f5e535be4da495df3b39b29b8febdc2638a3dc8ee4cd03faf44bfebc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331694/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331694/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,41107,42176,51563,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32616823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Bo Yoon</creatorcontrib><creatorcontrib>Lee, Seul Ki</creatorcontrib><creatorcontrib>Kim, Da Eun</creatorcontrib><creatorcontrib>Bae, Jin Hye</creatorcontrib><creatorcontrib>Ho, Thanh Tam</creatorcontrib><creatorcontrib>Park, So-Young</creatorcontrib><creatorcontrib>Lee, Mi Kyeong</creatorcontrib><creatorcontrib>Kim, Sung Yeon</creatorcontrib><title>Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide ( 1 ), a polyacetylene ( 2 ) and a lignan ( 3 ) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound 1 ) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast—specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK–c-Fos–NFATC1 cascade.</description><subject>631/154/436/2388</subject><subject>631/443/63</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents - isolation &amp; purification</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Antioxidants - isolation &amp; purification</subject><subject>Antioxidants - pharmacology</subject><subject>Bone Density Conservation Agents - isolation &amp; purification</subject><subject>Bone Density Conservation Agents - pharmacology</subject><subject>Bone resorption</subject><subject>Bone Resorption - drug therapy</subject><subject>Bone Resorption - prevention &amp; control</subject><subject>c-Fos protein</subject><subject>Drug Evaluation, Preclinical</subject><subject>Echinacea - chemistry</subject><subject>Echinacea purpurea</subject><subject>Fractionation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>NFATC Transcription Factors - drug effects</subject><subject>NFATC Transcription Factors - metabolism</subject><subject>Nitric Oxide - biosynthesis</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteogenesis - drug effects</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Phytotherapy</subject><subject>Plant Roots - chemistry</subject><subject>Polyacetylene</subject><subject>Protein Processing, Post-Translational - drug effects</subject><subject>RANK Ligand - pharmacology</subject><subject>RAW 264.7 Cells</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Secondary metabolites</subject><subject>Toxicity</subject><subject>TRANCE protein</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Tumor Necrosis Factor-alpha - biosynthesis</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1vEzEQtRCIVqV_gAOyxAUOW_y52b0goSpApSAucLb8Mc66JHawN1W58suZNqUtFyxbM9Z788aeR8hLzs44k8O7prgeh44J1vWLYWTd9RNyLJjSnZBCPH2UH5HT1i4ZLi1Gxcfn5EiKnveDkMfk9zJG8DMtkYKfUrabH3abAlA8eU4xQaCxli1d3qIeLN3tK25M3qzO3tIvBbKfaMl0nrAqT8mlOeEVFUubofiNbXNZQ4aWGrU5UFcy0Aqt1N0N8wV5Fu2mweldPCHfPy6_nX_uVl8_XZx_WHVecz53Stngh0FHDVpqBypYNeoQpZOjE6MbIrjgRS8HK5EIoHxgMtqolEPIyxPy_qC727stBI__q3ZjdjVtbf1lik3mXySnyazLlVlIyftRocDrO4Fafu6hzeay7CuOrBmBc9VqwTRHljiwfC2tVYj3HTgzN9aZg3UGrTO31plrLHr1-G33JX-NQoI8EBpCeQ31ofd_ZP8AoYaphQ</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Chang, Bo Yoon</creator><creator>Lee, Seul Ki</creator><creator>Kim, Da Eun</creator><creator>Bae, Jin Hye</creator><creator>Ho, Thanh Tam</creator><creator>Park, So-Young</creator><creator>Lee, Mi Kyeong</creator><creator>Kim, Sung Yeon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20200702</creationdate><title>Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption</title><author>Chang, Bo Yoon ; Lee, Seul Ki ; Kim, Da Eun ; Bae, Jin Hye ; Ho, Thanh Tam ; Park, So-Young ; Lee, Mi Kyeong ; Kim, Sung Yeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-44adc885f5e535be4da495df3b39b29b8febdc2638a3dc8ee4cd03faf44bfebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/154/436/2388</topic><topic>631/443/63</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents - isolation &amp; purification</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Antioxidants - isolation &amp; purification</topic><topic>Antioxidants - pharmacology</topic><topic>Bone Density Conservation Agents - isolation &amp; purification</topic><topic>Bone Density Conservation Agents - pharmacology</topic><topic>Bone resorption</topic><topic>Bone Resorption - drug therapy</topic><topic>Bone Resorption - prevention &amp; control</topic><topic>c-Fos protein</topic><topic>Drug Evaluation, Preclinical</topic><topic>Echinacea - chemistry</topic><topic>Echinacea purpurea</topic><topic>Fractionation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>NFATC Transcription Factors - drug effects</topic><topic>NFATC Transcription Factors - metabolism</topic><topic>Nitric Oxide - biosynthesis</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteogenesis - drug effects</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Phytotherapy</topic><topic>Plant Roots - chemistry</topic><topic>Polyacetylene</topic><topic>Protein Processing, Post-Translational - drug effects</topic><topic>RANK Ligand - pharmacology</topic><topic>RAW 264.7 Cells</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Secondary metabolites</topic><topic>Toxicity</topic><topic>TRANCE protein</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Tumor Necrosis Factor-alpha - biosynthesis</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Bo Yoon</creatorcontrib><creatorcontrib>Lee, Seul Ki</creatorcontrib><creatorcontrib>Kim, Da Eun</creatorcontrib><creatorcontrib>Bae, Jin Hye</creatorcontrib><creatorcontrib>Ho, Thanh Tam</creatorcontrib><creatorcontrib>Park, So-Young</creatorcontrib><creatorcontrib>Lee, Mi Kyeong</creatorcontrib><creatorcontrib>Kim, Sung Yeon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Bo Yoon</au><au>Lee, Seul Ki</au><au>Kim, Da Eun</au><au>Bae, Jin Hye</au><au>Ho, Thanh Tam</au><au>Park, So-Young</au><au>Lee, Mi Kyeong</au><au>Kim, Sung Yeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-07-02</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10914</spage><pages>10914-</pages><artnum>10914</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide ( 1 ), a polyacetylene ( 2 ) and a lignan ( 3 ) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound 1 ) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast—specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK–c-Fos–NFATC1 cascade.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32616823</pmid><doi>10.1038/s41598-020-67890-x</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-07, Vol.10 (1), p.10914, Article 10914
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331694
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/154/436/2388
631/443/63
Animals
Anti-Inflammatory Agents - isolation & purification
Anti-Inflammatory Agents - pharmacology
Antioxidants - isolation & purification
Antioxidants - pharmacology
Bone Density Conservation Agents - isolation & purification
Bone Density Conservation Agents - pharmacology
Bone resorption
Bone Resorption - drug therapy
Bone Resorption - prevention & control
c-Fos protein
Drug Evaluation, Preclinical
Echinacea - chemistry
Echinacea purpurea
Fractionation
Gene expression
Gene Expression Regulation - drug effects
Humanities and Social Sciences
Kinases
Macrophages - drug effects
Macrophages - metabolism
MAP kinase
MAP Kinase Signaling System - drug effects
Metabolites
Mice
Mice, Inbred C57BL
multidisciplinary
NFATC Transcription Factors - drug effects
NFATC Transcription Factors - metabolism
Nitric Oxide - biosynthesis
Osteoclastogenesis
Osteoclasts
Osteogenesis - drug effects
Phosphorylation
Phosphorylation - drug effects
Phytotherapy
Plant Roots - chemistry
Polyacetylene
Protein Processing, Post-Translational - drug effects
RANK Ligand - pharmacology
RAW 264.7 Cells
Science
Science (multidisciplinary)
Secondary metabolites
Toxicity
TRANCE protein
Transcription activation
Transcription factors
Transcription, Genetic - drug effects
Tumor Necrosis Factor-alpha - biosynthesis
Tumor Necrosis Factor-alpha - genetics
title Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20echinalkamide%20identified%20from%20Echinacea%20purpurea%20(L.)%20Moench%20on%20the%20inhibition%20of%20osteoclastogenesis%20and%20bone%20resorption&rft.jtitle=Scientific%20reports&rft.au=Chang,%20Bo%20Yoon&rft.date=2020-07-02&rft.volume=10&rft.issue=1&rft.spage=10914&rft.pages=10914-&rft.artnum=10914&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-67890-x&rft_dat=%3Cproquest_pubme%3E2419547051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419547051&rft_id=info:pmid/32616823&rfr_iscdi=true