Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption

Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.10914, Article 10914
Hauptverfasser: Chang, Bo Yoon, Lee, Seul Ki, Kim, Da Eun, Bae, Jin Hye, Ho, Thanh Tam, Park, So-Young, Lee, Mi Kyeong, Kim, Sung Yeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide ( 1 ), a polyacetylene ( 2 ) and a lignan ( 3 ) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound 1 ) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast—specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK–c-Fos–NFATC1 cascade.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-67890-x