Rational synthesis of atomically thin quantum structures in nanowires based on nucleation processes
Excitonic properties in quantum dot (QD) structure are essential properties for applications in quantum computing, cryptography, and photonics. Top-down fabrication and bottom-up growth by self-assembling for forming the QDs have shown their usefulness. These methods, however, still inherent issues...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-07, Vol.10 (1), p.10720-10720, Article 10720 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Excitonic properties in quantum dot (QD) structure are essential properties for applications in quantum computing, cryptography, and photonics. Top-down fabrication and bottom-up growth by self-assembling for forming the QDs have shown their usefulness. These methods, however, still inherent issues in precision integrating the regimes with high reproducibility and positioning to realize the applications with on-demand quantum properties on Si platforms. Here, we report on a rational synthesis of embedding atomically thin InAs in nanowire materials on Si by selective-area regrowth. An extremely slow growth rate specified for the synthesis demonstrated to form smallest quantum structures reaching nuclear size, and provided good controllability for the excitonic states on Si platforms. The system exhibited sharp photoluminescence spectra originating from exciton and bi-exciton suggesting the carriers were confined inside the nuclei. The selective-area regrowth would open new approach to integrate the exciton states with Si platforms as building-blocks for versatile quantum systems. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-67625-y |