A rasterized building footprint dataset for the United States

Microsoft released a U.S.-wide vector building dataset in 2018. Although the vector building layers provide relatively accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High-Performance Computing (HPC) to develop an algorithm that calculat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2020-06, Vol.7 (1), p.207-207, Article 207
Hauptverfasser: Heris, Mehdi P., Foks, Nathan Leon, Bagstad, Kenneth J., Troy, Austin, Ancona, Zachary H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microsoft released a U.S.-wide vector building dataset in 2018. Although the vector building layers provide relatively accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High-Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state, excluding Alaska and Hawaii: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values are represented as raster layers with 30 m cell size covering the 48 conterminous states. We also identify errors in the original building dataset. We evaluate precision and recall in the data for three large U.S. urban areas. Precision is high and comparable to results reported by Microsoft while recall is high for buildings with footprints larger than 200 m2 but lower for progressively smaller buildings. Measurement(s) building • building footprint • area • building count Technology Type(s) computational modeling technique Sample Characteristic - Environment city Sample Characteristic - Location contiguous United States of America Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12444776
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-020-0542-3