Rolling circle amplification of synthetic DNA accelerates biocatalytic determination of enzyme activity relative to conventional methods

The ability to quickly and easily assess the activity of large collections of enzymes for a desired substrate holds great promise in the field of biocatalysis. Cell-free synthesis, although not practically amenable for large-scale enzyme production, provides a way to accelerate the timeline for scre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-06, Vol.10 (1), p.10279-10279, Article 10279
Hauptverfasser: Hadi, Timin, Nozzi, Nicole, Melby, Joel O., Gao, Wei, Fuerst, Douglas E., Kvam, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to quickly and easily assess the activity of large collections of enzymes for a desired substrate holds great promise in the field of biocatalysis. Cell-free synthesis, although not practically amenable for large-scale enzyme production, provides a way to accelerate the timeline for screening enzyme candidates using small-scale reactions. However, because cell-free enzyme synthesis requires a considerable amount of template DNA, the preparation of high-quality DNA “parts” in large quantities represents a costly and rate-limiting prerequisite for high throughput screening. Based on time-cost analysis and comparative activity data, a cell-free workflow using synthetic DNA minicircles and rolling circle amplification enables comparable biocatalytic activity to cell-based workflows in almost half the time. We demonstrate this capability using a panel of sequences from the carbon-nitrogen hydrolase superfamily that represent possible green catalysts for synthesizing small molecules with less waste compared to traditional industrial chemistry. This method provides a new alternative to more cumbersome plasmid- or PCR-based protein expression workflows and should be amenable to automation for accelerating enzyme screening in industrial applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-67307-9