Second-Order Optimality Conditions in Locally Lipschitz Inequality-Constrained Multiobjective Optimization

The main goal of this paper is to give some primal and dual Karush–Kuhn–Tucker second-order necessary conditions for the existence of a strict local Pareto minimum of order two for an inequality-constrained multiobjective optimization problem. Dual Karush–Kuhn–Tucker second-order sufficient conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2020, Vol.186 (1), p.50-67
1. Verfasser: Constantin, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main goal of this paper is to give some primal and dual Karush–Kuhn–Tucker second-order necessary conditions for the existence of a strict local Pareto minimum of order two for an inequality-constrained multiobjective optimization problem. Dual Karush–Kuhn–Tucker second-order sufficient conditions are provided too. We suppose that the objective function and the active inequality constraints are only locally Lipschitz in the primal necessary conditions and only strictly differentiable in sense of Clarke at the extremum point in the dual conditions. Examples illustrate the applicability of the obtained results.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-020-01688-9