Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests
Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large for...
Gespeichert in:
Veröffentlicht in: | Communications biology 2020-06, Vol.3 (1), p.317-317, Article 317 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16–60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume–soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration.
Xu et al. examine the effect of leguminous trees on neighbor diversity across 11 plots in tropical forests around the world, and find that in high soil nitrogen conditions, most legume species have higher neighbor diversity than non-legumes, and vice versa where soil nitrogen is low. Their results have practical implications for the utilization of legumes in forest restoration. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-020-1041-y |