The Potential of Overlayers on Tin-based Perovskites for Water Splitting

Photoelectrochemical water splitting is a promising method of clean hydrogen production for green energy uses. Here, we report on a tin-based oxide perovskite combined with an overlayer that shows enhanced bifunctional hydrogen and oxygen evolution. In our first-principles study of tin-based perovsk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-05, Vol.11 (10), p.4124-4130
Hauptverfasser: Taylor, Ned Thaddeus, Price, Conor Jason, Petkov, Alexander, Romanis Carr, Marcus Ian, Hale, Jason Charles, Hepplestone, Steven Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoelectrochemical water splitting is a promising method of clean hydrogen production for green energy uses. Here, we report on a tin-based oxide perovskite combined with an overlayer that shows enhanced bifunctional hydrogen and oxygen evolution. In our first-principles study of tin-based perovskites, based upon density functional theory, we investigate how the formation of a surface affects the electronic properties of these materials. We show that the best candidate, SrSnO3, possesses hydrogen and oxygen overpotentials of 0.75 and 0.72 eV, respectively, which are reduced to 0.35 and 0.54 eV with the inclusion of a ZrO2 overlayer. Furthermore, this overlayer promotes charge extraction, stabilizes the reaction pathways, and improves the band gap such that it straddles the overpotentials between pH 0 and pH 12. This result indicates that SrSnO3 with a ZrO2 overlayer has significant potential as a highly efficient bifunctional water splitter for producing hydrogen and oxygen gas on the same surface.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c00964