Combating iron overload: a case for deferoxamine-based nanochelators
While iron is a nutrient metal, iron overload can result in multiple organ failures. Iron chelators, such as deferoxamine, are commonly used to ameliorate iron overload conditions. However, their uses are limited due to poor pharmacokinetics and adverse effects. Many novel chelator formulations have...
Gespeichert in:
Veröffentlicht in: | Nanomedicine (London, England) England), 2020-06, Vol.15 (13), p.1341-1356 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While iron is a nutrient metal, iron overload can result in multiple organ failures. Iron chelators, such as deferoxamine, are commonly used to ameliorate iron overload conditions. However, their uses are limited due to poor pharmacokinetics and adverse effects. Many novel chelator formulations have been developed to overcome these drawbacks. In this review, we have discussed various nanochelators, including linear and branched polymers, dendrimers, polyrotaxane, micelles, nanogels, polymeric nanoparticles and liposomes. Although these research efforts have mainly been focused on nanochelators with longer half-lives, prolonged residence of polymers in the body could raise potential safety issues. We also discussed recent advances in nanochelation technologies, including mechanism-based, long-acting nanochelators. |
---|---|
ISSN: | 1743-5889 1748-6963 |
DOI: | 10.2217/nnm-2020-0038 |