Modeling opportunities in comparative oncology for drug development

Successful development of novel cancer drugs depends on well-reasoned scientific drug discovery, rigorous preclinical development, and carefully conceived clinical trials. Failure in any of these steps contributes to poor rates of approval for new drugs to treat cancer. As technological and scientif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ILAR journal 2010, Vol.51 (3), p.214-220
Hauptverfasser: Gordon, Ira K, Khanna, Chand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Successful development of novel cancer drugs depends on well-reasoned scientific drug discovery, rigorous preclinical development, and carefully conceived clinical trials. Failure in any of these steps contributes to poor rates of approval for new drugs to treat cancer. As technological and scientific advances have opened the door to a variety of novel approaches to cancer drug discovery and development, preclinical models that can answer questions about the activity and safety of novel therapies are increasingly necessary. The advance of a drug to clinical trials based on information from preclinical models presupposes that the models convey informative data for future use in human patients with cancer. The study of novel cancer drugs using in vitro models is highly controllable, reproducible, relatively inexpensive, and linked to high throughput. However, these models fail to reproduce many of the complex features of human cancer. Mouse models address some of these limitations but have important biological differences from human cancer. The integration of studies using pet dogs with spontaneously occurring tumors as models in the development path can answer questions not adequately addressed in conventional models and is therefore gaining attention and interest in drug development communities. The study of novel cancer drugs in dogs with naturally occurring tumors allows drug assessment in a cancer that shares many fundamental features with the human cancer condition, and thus provides an opportunity to answer questions that inform the cancer drug development path in ways not possible in more conventional models.
ISSN:1084-2020
1930-6180
DOI:10.1093/ilar.51.3.214