Generalized Co-clustering Analysis via Regularized Alternating Least Squares
Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal intrinsic associations between rows and columns. However, most existing methods rely on Gaussian assumptions an...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2020-10, Vol.150, p.106989, Article 106989 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106989 |
container_title | Computational statistics & data analysis |
container_volume | 150 |
creator | Li, Gen |
description | Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal intrinsic associations between rows and columns. However, most existing methods rely on Gaussian assumptions and only apply to matrix data. In practice, non-Gaussian and/or multi-way tensor data are frequently encountered. A new CO-clustering method via Regularized Alternating Least Squares (CORALS) is proposed, which generalizes biclustering to non-Gaussian data and multi-way tensor arrays. Non-Gaussian data are modeled with single-parameter exponential family distributions and co-clusters are identified in the natural parameter space via sparse CANDECOMP/PARAFAC tensor decomposition. A regularized alternating (iteratively reweighted) least squares algorithm is devised for model fitting and a deflation procedure is exploited to automatically determine the number of co-clusters. Comprehensive simulation studies and three real data examples demonstrate the efficacy of the proposed method. The data and code are publicly available at https://github.com/reagan0323/CORALS. |
doi_str_mv | 10.1016/j.csda.2020.106989 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7297185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947320300803</els_id><sourcerecordid>2414411157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-b2a12b67ad9249e0f946c7bba780b58623ac63c83aa825addae7e1afae0f40ab3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRtH78AQ-So5fU3c0muwERStEqFAQ_zstkM61b0sTuJoX6691YLXrxNDDzzDsfLyHnjA4ZZdnVYmh8CUNOeZ_IcpXvkQFTkscySfk-GQRIxrmQyRE59n5BKeVCqkNylPBUZErmAzKdYI0OKvuBZTRuYlN1vkVn63k0qqHaeOujtYXoCeddBe4LG1WBqKHtoSmCb6PnVQcO_Sk5mEHl8ew7npDXu9uX8X08fZw8jEfT2KSctXHBgfEik1DmXORIZ7nIjCwKkIoWqcp4AiZLjEoAFE-hLAElMphBQAWFIjkhN1vd965YYmmwbsMJ-t3ZJbiNbsDqv5Xavul5s9aS55KpNAhcfgu4ZtWhb_XSeoNVBTU2nddcMCEYY6kMKN-ixjXeO5ztxjCqexv0Qvc26N4GvbUhNF38XnDX8vP3AFxvAQxvWlt02huLtcHSOjStLhv7n_4nJkibig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414411157</pqid></control><display><type>article</type><title>Generalized Co-clustering Analysis via Regularized Alternating Least Squares</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Gen</creator><creatorcontrib>Li, Gen</creatorcontrib><description>Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal intrinsic associations between rows and columns. However, most existing methods rely on Gaussian assumptions and only apply to matrix data. In practice, non-Gaussian and/or multi-way tensor data are frequently encountered. A new CO-clustering method via Regularized Alternating Least Squares (CORALS) is proposed, which generalizes biclustering to non-Gaussian data and multi-way tensor arrays. Non-Gaussian data are modeled with single-parameter exponential family distributions and co-clusters are identified in the natural parameter space via sparse CANDECOMP/PARAFAC tensor decomposition. A regularized alternating (iteratively reweighted) least squares algorithm is devised for model fitting and a deflation procedure is exploited to automatically determine the number of co-clusters. Comprehensive simulation studies and three real data examples demonstrate the efficacy of the proposed method. The data and code are publicly available at https://github.com/reagan0323/CORALS.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2020.106989</identifier><identifier>PMID: 32546879</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biclustering ; Exponential family ; Generalized Linear Model ; Parafac/Candecomp ; Tensor</subject><ispartof>Computational statistics & data analysis, 2020-10, Vol.150, p.106989, Article 106989</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-b2a12b67ad9249e0f946c7bba780b58623ac63c83aa825addae7e1afae0f40ab3</citedby><cites>FETCH-LOGICAL-c521t-b2a12b67ad9249e0f946c7bba780b58623ac63c83aa825addae7e1afae0f40ab3</cites><orcidid>0000-0002-7298-2141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947320300803$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32546879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Gen</creatorcontrib><title>Generalized Co-clustering Analysis via Regularized Alternating Least Squares</title><title>Computational statistics & data analysis</title><addtitle>Comput Stat Data Anal</addtitle><description>Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal intrinsic associations between rows and columns. However, most existing methods rely on Gaussian assumptions and only apply to matrix data. In practice, non-Gaussian and/or multi-way tensor data are frequently encountered. A new CO-clustering method via Regularized Alternating Least Squares (CORALS) is proposed, which generalizes biclustering to non-Gaussian data and multi-way tensor arrays. Non-Gaussian data are modeled with single-parameter exponential family distributions and co-clusters are identified in the natural parameter space via sparse CANDECOMP/PARAFAC tensor decomposition. A regularized alternating (iteratively reweighted) least squares algorithm is devised for model fitting and a deflation procedure is exploited to automatically determine the number of co-clusters. Comprehensive simulation studies and three real data examples demonstrate the efficacy of the proposed method. The data and code are publicly available at https://github.com/reagan0323/CORALS.</description><subject>Biclustering</subject><subject>Exponential family</subject><subject>Generalized Linear Model</subject><subject>Parafac/Candecomp</subject><subject>Tensor</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1Lw0AQhhdRtH78AQ-So5fU3c0muwERStEqFAQ_zstkM61b0sTuJoX6691YLXrxNDDzzDsfLyHnjA4ZZdnVYmh8CUNOeZ_IcpXvkQFTkscySfk-GQRIxrmQyRE59n5BKeVCqkNylPBUZErmAzKdYI0OKvuBZTRuYlN1vkVn63k0qqHaeOujtYXoCeddBe4LG1WBqKHtoSmCb6PnVQcO_Sk5mEHl8ew7npDXu9uX8X08fZw8jEfT2KSctXHBgfEik1DmXORIZ7nIjCwKkIoWqcp4AiZLjEoAFE-hLAElMphBQAWFIjkhN1vd965YYmmwbsMJ-t3ZJbiNbsDqv5Xavul5s9aS55KpNAhcfgu4ZtWhb_XSeoNVBTU2nddcMCEYY6kMKN-ixjXeO5ztxjCqexv0Qvc26N4GvbUhNF38XnDX8vP3AFxvAQxvWlt02huLtcHSOjStLhv7n_4nJkibig</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Li, Gen</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7298-2141</orcidid></search><sort><creationdate>20201001</creationdate><title>Generalized Co-clustering Analysis via Regularized Alternating Least Squares</title><author>Li, Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-b2a12b67ad9249e0f946c7bba780b58623ac63c83aa825addae7e1afae0f40ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biclustering</topic><topic>Exponential family</topic><topic>Generalized Linear Model</topic><topic>Parafac/Candecomp</topic><topic>Tensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Co-clustering Analysis via Regularized Alternating Least Squares</atitle><jtitle>Computational statistics & data analysis</jtitle><addtitle>Comput Stat Data Anal</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>150</volume><spage>106989</spage><pages>106989-</pages><artnum>106989</artnum><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal intrinsic associations between rows and columns. However, most existing methods rely on Gaussian assumptions and only apply to matrix data. In practice, non-Gaussian and/or multi-way tensor data are frequently encountered. A new CO-clustering method via Regularized Alternating Least Squares (CORALS) is proposed, which generalizes biclustering to non-Gaussian data and multi-way tensor arrays. Non-Gaussian data are modeled with single-parameter exponential family distributions and co-clusters are identified in the natural parameter space via sparse CANDECOMP/PARAFAC tensor decomposition. A regularized alternating (iteratively reweighted) least squares algorithm is devised for model fitting and a deflation procedure is exploited to automatically determine the number of co-clusters. Comprehensive simulation studies and three real data examples demonstrate the efficacy of the proposed method. The data and code are publicly available at https://github.com/reagan0323/CORALS.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32546879</pmid><doi>10.1016/j.csda.2020.106989</doi><orcidid>https://orcid.org/0000-0002-7298-2141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2020-10, Vol.150, p.106989, Article 106989 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7297185 |
source | Elsevier ScienceDirect Journals |
subjects | Biclustering Exponential family Generalized Linear Model Parafac/Candecomp Tensor |
title | Generalized Co-clustering Analysis via Regularized Alternating Least Squares |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Co-clustering%20Analysis%20via%20Regularized%20Alternating%20Least%20Squares&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Li,%20Gen&rft.date=2020-10-01&rft.volume=150&rft.spage=106989&rft.pages=106989-&rft.artnum=106989&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2020.106989&rft_dat=%3Cproquest_pubme%3E2414411157%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414411157&rft_id=info:pmid/32546879&rft_els_id=S0167947320300803&rfr_iscdi=true |