Generalized Co-clustering Analysis via Regularized Alternating Least Squares
Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal intrinsic associations between rows and columns. However, most existing methods rely on Gaussian assumptions an...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2020-10, Vol.150, p.106989, Article 106989 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal intrinsic associations between rows and columns. However, most existing methods rely on Gaussian assumptions and only apply to matrix data. In practice, non-Gaussian and/or multi-way tensor data are frequently encountered. A new CO-clustering method via Regularized Alternating Least Squares (CORALS) is proposed, which generalizes biclustering to non-Gaussian data and multi-way tensor arrays. Non-Gaussian data are modeled with single-parameter exponential family distributions and co-clusters are identified in the natural parameter space via sparse CANDECOMP/PARAFAC tensor decomposition. A regularized alternating (iteratively reweighted) least squares algorithm is devised for model fitting and a deflation procedure is exploited to automatically determine the number of co-clusters. Comprehensive simulation studies and three real data examples demonstrate the efficacy of the proposed method. The data and code are publicly available at https://github.com/reagan0323/CORALS. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2020.106989 |