Identification of a metabolic gene panel to predict the prognosis of myelodysplastic syndrome
Myelodysplastic syndrome (MDS) is clonal disease featured by ineffective haematopoiesis and potential progression into acute myeloid leukaemia (AML). At present, the risk stratification and prognosis of MDS need to be further optimized. A prognostic model was constructed by the least absolute shrink...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2020-06, Vol.24 (11), p.6373-6384 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Myelodysplastic syndrome (MDS) is clonal disease featured by ineffective haematopoiesis and potential progression into acute myeloid leukaemia (AML). At present, the risk stratification and prognosis of MDS need to be further optimized. A prognostic model was constructed by the least absolute shrinkage and selection operator (LASSO) regression analysis for MDS patients based on the identified metabolic gene panel in training cohort, followed by external validation in an independent cohort. The patients with lower risk had better prognosis than patients with higher risk. The constructed model was verified as an independent prognostic factor for MDS patients with hazard ratios of 3.721 (1.814‐7.630) and 2.047 (1.013‐4.138) in the training cohort and validation cohort, respectively. The AUC of 3‐year overall survival was 0.846 and 0.743 in the training cohort and validation cohort, respectively. The high‐risk score was significantly related to other clinical prognostic characteristics, including higher bone marrow blast cells and lower absolute neutrophil count. Moreover, gene set enrichment analyses (GSEA) showed several significantly enriched pathways, with potential indication of the pathogenesis. In this study, we identified a novel stable metabolic panel, which might not only reveal the dysregulated metabolic microenvironment, but can be used to predict the prognosis of MDS. |
---|---|
ISSN: | 1582-1838 1582-4934 |
DOI: | 10.1111/jcmm.15283 |