The gains of a 4‐week cognitive training are not modulated by novelty

Cognitive training should not only improve performance of the trained task, but also untrained abilities. Exposure to novelty can improve subsequent memory performance, suggesting that novelty exposure might be a critical factor to promote the effects of cognitive training. Therefore, we combined a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2020-07, Vol.41 (10), p.2596-2610
Hauptverfasser: Biel, Davina, Steiger, Tineke K., Volkmann, Torben, Jochems, Nicole, Bunzeck, Nico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cognitive training should not only improve performance of the trained task, but also untrained abilities. Exposure to novelty can improve subsequent memory performance, suggesting that novelty exposure might be a critical factor to promote the effects of cognitive training. Therefore, we combined a 4‐week working memory training with novelty exposure. Neuropsychological tests and MRI data were acquired before and after training to analyze behavior and changes in gray matter volume, myelination, and iron levels. In total, 83 healthy older humans participated in one of three groups: Two groups completed a 4‐week computerized cognitive training of a two‐back working memory task, either in combination with novel or with familiarized nature movies. A third group did not receive any training. As expected, both training groups showed improvements in task specific working memory performance and reaction times. However, there were no transfer or novelty effects on fluid intelligence, verbal memory, digit‐span, and executive functions. At the neural level, no significant micro‐ or macrostructural changes emerged in either group. Our findings suggest that working memory training in healthy older adults is associated with task‐specific improvements, but these gains do not transfer to other cognitive domains, and it does not lead to structural brain changes.
ISSN:1065-9471
1097-0193
DOI:10.1002/hbm.24965