Addressing the challenge of carbon-free energy

This century will witness a major transformation in how energy is acquired, stored, and utilized globally. The impetus for this change comes from the deep impacts that both developed and developing societies have had on our planet’s environment during the past century, and the projections going forw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (23), p.12543-12549
Hauptverfasser: Eisenberg, Richard, Gray, Harry B., Crabtree, George W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This century will witness a major transformation in how energy is acquired, stored, and utilized globally. The impetus for this change comes from the deep impacts that both developed and developing societies have had on our planet’s environment during the past century, and the projections going forward of what will happen if we do not act transformatively within the next 2 decades. This paper describes the basis for a meeting held in October 2018 on the need for decarbonization in our energy landscape, and specifically the status and challenges of the science that provides the foundation for such technology. Within the realm of decarbonization in energy generation lies the science of solar energy conversion using new or improved photovoltaic materials and artificial photosynthesis for water splitting and other energy-storing reactions. The intimately related issue of renewable energy storage is being addressed with new strategies, materials, and approaches under current investigation and development. The need to improve the interactions between scientists working on these connected but separately considered challenges and on the transition of scientific achievement to practical application was also addressed, with specific efforts enumerated.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.1821674116