Individual Calculation of Effective Dose and Risk of Malignancy Based on Monte Carlo Simulations after Whole Body Computed Tomography

Detailed knowledge about radiation exposure is crucial for radiology professionals. The conventional calculation of effective dose (ED) for computed tomography (CT) is based on dose length product (DLP) and population-based conversion factors (k). This is often imprecise and unable to consider indiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-06, Vol.10 (1), Article 9475
Hauptverfasser: Kopp, Markus, Loewe, Tobias, Wuest, Wolfgang, Brand, Michael, Wetzl, Matthias, Nitsch, Wolfram, Schmidt, Daniela, Beck, Michael, Schmidt, Bernhard, Uder, Michael, May, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detailed knowledge about radiation exposure is crucial for radiology professionals. The conventional calculation of effective dose (ED) for computed tomography (CT) is based on dose length product (DLP) and population-based conversion factors (k). This is often imprecise and unable to consider individual patient characteristics. We sought to provide more precise and individual radiation exposure calculation using image based Monte Carlo simulations (MC) in a heterogeneous patient collective and to compare it to phantom based MC provided from the National Cancer Institute (NCI) as academic reference. Dose distributions were simulated for 22 patients after whole-body CT during Positron Emission Tomography-CT. Based on MC we calculated individual Lifetime Attributable Risk (LAR) and Excess Relative Risk (ERR) of cancer mortality. ED MC was compared to ED DLP and ED NCI . ED DLP (13.2 ± 4.5 mSv) was higher compared to ED NCI (9.8 ± 2.1 mSv) and ED MC (11.6 ± 1.5 mSv). Relative individual differences were up to −48% for ED MC and −44% for ED NCI compared to ED DLP . Matching pair analysis illustrates that young age and gender are affecting LAR and ERR significantly. Because of these uncertainties in radiation dose assessment automated individual dose and risk estimation would be desirable for dose monitoring in the future.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-66366-2