Topical application of endothelin receptor A antagonist attenuates imiquimod-induced psoriasiform skin inflammation
Endothelin-1 (ET-1) is well known as the most potent vasoconstrictor, and can evoke histamine-independent pruritus. Recently, its involvement in cutaneous inflammation has begun to draw attention. The upregulation of ET-1 expression in the epidermis of human psoriasis patients has been reported. It...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.9510, Article 9510 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Endothelin-1 (ET-1) is well known as the most potent vasoconstrictor, and can evoke histamine-independent pruritus. Recently, its involvement in cutaneous inflammation has begun to draw attention. The upregulation of ET-1 expression in the epidermis of human psoriasis patients has been reported. It was also demonstrated that ET-1 can stimulate dendritic cells to induce Th17/1 immune responses. However, the role of the interaction between ET-1 and ET-1 receptors in the pathogenesis of psoriasis remains elusive. Here, we investigated the effects of ET-1 receptor antagonist on imiquimod (IMQ) -induced psoriasiform dermatitis in mouse. Psoriasis-related cytokines such as IL-17A and TNF-α induced ET-1 expression in human keratinocytes. Topical application of selective endothelin A receptor (ETAR) antagonist ambrisentan significantly attenuated the development of IMQ-induced psoriasiform dermatitis and also significantly inhibited the histological inflammation and cytokine expression (TNF-α, IL-12p40, IL-12 p19, and IL-17) in the lesional skin of the mouse model. Furthermore, topical application of ambrisentan suppressed phenotypic and functional activation of dendritic cells in lymph nodes. Our findings indicate that the ET-1 and ETAR axis plays an important role in the pathogenesis of psoriasis and is a potential therapeutic target for treating psoriasis. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-66490-z |