Mechanism of Heat-Induced Fusion of Silver Nanowires
Physical changes in arranged silver nanowires were monitored during progressive heating inside a transmission electron microscope. Using the in-situ experimental method, overall variation of silver nanowires and movement of the silver atoms could be assessed. The physical morphology of silver nanowi...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.9271-9271, Article 9271 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Physical changes in arranged silver nanowires were monitored during progressive heating inside a transmission electron microscope. Using the
in-situ
experimental method, overall variation of silver nanowires and movement of the silver atoms could be assessed. The physical morphology of silver nanowires was rapidly transformed above 350 °C as they fused with each other, which led to extrusion of the silver atoms. Around 550 °C, silver nanowires were almost fused into one, filling a relatively large void between silver nanowires. However, above 575 °C, the united silver nanowire was completely cut off, starting from the region that was suspected to have defects. For the first time, the fusion of arranged silver nanowires and the configurational changes of silver atoms during heating were visualized, and the migration between silver atoms and the damage mechanism of silver nanowires were assessed. Moreover, the relationship of physical morphology and electrical property of silver nanowires according to the temperature were investigated using the
ex-situ
experimental method. As silver nanowires started to split at 300 °C, the electrical conductivity deteriorated greatly. Beyond 350 °C, the electrical conductivity was completely lost while silver nanowires disintegrated rapidly, and silver nanowires completely disappeared at 450 °C. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-66304-2 |