Cardiac substructure segmentation with deep learning for improved cardiac sparing
Purpose Radiation dose to cardiac substructures is related to radiation‐induced heart disease. However, substructures are not considered in radiation therapy planning (RTP) due to poor visualization on CT. Therefore, we developed a novel deep learning (DL) pipeline leveraging MRI’s soft tissue contr...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2020-02, Vol.47 (2), p.576-586 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Radiation dose to cardiac substructures is related to radiation‐induced heart disease. However, substructures are not considered in radiation therapy planning (RTP) due to poor visualization on CT. Therefore, we developed a novel deep learning (DL) pipeline leveraging MRI’s soft tissue contrast coupled with CT for state‐of‐the‐art cardiac substructure segmentation requiring a single, non‐contrast CT input.
Materials/methods
Thirty‐two left‐sided whole‐breast cancer patients underwent cardiac T2 MRI and CT‐simulation. A rigid cardiac‐confined MR/CT registration enabled ground truth delineations of 12 substructures (chambers, great vessels (GVs), coronary arteries (CAs), etc.). Paired MRI/CT data (25 patients) were placed into separate image channels to train a three‐dimensional (3D) neural network using the entire 3D image. Deep supervision and a Dice‐weighted multi‐class loss function were applied. Results were assessed pre/post augmentation and post‐processing (3D conditional random field (CRF)). Results for 11 test CTs (seven unique patients) were compared to ground truth and a multi‐atlas method (MA) via Dice similarity coefficient (DSC), mean distance to agreement (MDA), and Wilcoxon signed‐ranks tests. Three physicians evaluated clinical acceptance via consensus scoring (5‐point scale).
Results
The model stabilized in ~19 h (200 epochs, training error |
---|---|
ISSN: | 0094-2405 2473-4209 |
DOI: | 10.1002/mp.13940 |