Warburg and Beyond: The Power of Mitochondrial Metabolism to Collaborate or Replace Fermentative Glycolysis in Cancer

A defining hallmark of tumor phenotypes is uncontrolled cell proliferation, while fermentative glycolysis has long been considered as one of the major metabolic pathways that allows energy production and provides intermediates for the anabolic growth of cancer cells. Although such a vision has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2020-04, Vol.12 (5), p.1119
Hauptverfasser: Cassim, Shamir, Vučetić, Milica, Ždralević, Maša, Pouyssegur, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A defining hallmark of tumor phenotypes is uncontrolled cell proliferation, while fermentative glycolysis has long been considered as one of the major metabolic pathways that allows energy production and provides intermediates for the anabolic growth of cancer cells. Although such a vision has been crucial for the development of clinical imaging modalities, it has become now evident that in contrast to prior beliefs, mitochondria play a key role in tumorigenesis. Recent findings demonstrated that a full genetic disruption of the Warburg effect of aggressive cancers does not suppress but instead reduces tumor growth. Tumor growth then relies exclusively on functional mitochondria. Besides having fundamental bioenergetic functions, mitochondrial metabolism indeed provides appropriate building blocks for tumor anabolism, controls redox balance, and coordinates cell death. Hence, mitochondria represent promising targets for the development of novel anti-cancer agents. Here, after revisiting the long-standing Warburg effect from a historic and dynamic perspective, we review the role of mitochondria in cancer with particular attention to the cancer cell-intrinsic/extrinsic mechanisms through which mitochondria influence all steps of tumorigenesis, and briefly discuss the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers12051119