Aptamer based high throughput colorimetric biosensor for detection of staphylococcus aureus

To develop a high throughput colorimetric biosensor for detection of Staphylococcus aureus (SA) based on specific aptamer and catalysis of dsDNA-SYBR Green I (SG I) complex. SA specific aptamer was immobilized on a 96-well plate by hybridization with the capture probe anchored on the plate surface t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-06, Vol.10 (1), p.9190, Article 9190
Hauptverfasser: Yu, Tianxiao, Xu, Hong, Zhao, Yan, Han, Yanjie, Zhang, Yao, Zhang, Jingrui, Xu, Caihong, Wang, Wenju, Guo, Qing, Ge, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To develop a high throughput colorimetric biosensor for detection of Staphylococcus aureus (SA) based on specific aptamer and catalysis of dsDNA-SYBR Green I (SG I) complex. SA specific aptamer was immobilized on a 96-well plate by hybridization with the capture probe anchored on the plate surface through streptavidin-biotin binding. In presence of SA, the aptamer was dissociated from the capture probe-aptamer duplex due to the stronger interaction between the aptamer and SA. The consequent single-strand capture probe could be hybridized with a three-way junction (TWJ) probe. With the presence of SG I, the dsDNA-SG I complex catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) under photo-irradiation, producing sensitive photo-catalyzed colorimetric response to SA. Under the optimal conditions, the proposed method could directly detect SA with the limit of detection (LOD) at 81 CFU mL −1 in PBS buffer in 5.5 hours, which demonstrated the sensitive and fast quantification of target pathogenic bacteria. The method showed weak colorimetric signal to Escherichia coli and Pseudomonas aeruginosa , indicating the high specificity for SA. In addition, the method can simultaneously detect 96 samples which can be used for high throughput analysis. The designed method may become a powerful tool for pathogenic microorganisms screening in clinical diagnostics, food safety and environmental monitoring.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-66105-7