Ammonia Exposure Induced Cilia Dysfunction of Nasal Mucosa in the Piglets

As one of the main environmental stressors commonly found in closed pig houses, ammonia poses high risks to the well-being of humans and animals. This study is aimed at assessing the toxicity of ammonia exposure (80 ppm for 12 days) on the nasal mucosa in piglets. Firstly, we found that after ammoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2020, Vol.2020 (2020), p.1-11
Hauptverfasser: Li, Xiaoping, Yu, Mei, Gao, Yun, Huang, Longhui, Liu, Chun, Wang, Mengyao, Wang, Qiankun, Zhao, Shuhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As one of the main environmental stressors commonly found in closed pig houses, ammonia poses high risks to the well-being of humans and animals. This study is aimed at assessing the toxicity of ammonia exposure (80 ppm for 12 days) on the nasal mucosa in piglets. Firstly, we found that after ammonia exposure, the number of white blood cells significantly increased and the serum levels of cytokine IL-4 were significantly decreased. Then, histological analyses showed significant thickening of nasal mucosa and excessive mucus production in the exposure group. Finally, RNA-seq analyses demonstrated that the ammonia exposure disturbed the transcriptome of nasal mucosa which revealed 176 upregulated genes and 426 downregulated genes. GO and KEGG pathway enrichment analysis of the DEGs showed that the upregulated genes were mainly related to neutrophil chemotaxis and immune response, while 80 out of the 426 downregulated genes including CCDCs, CFAPs, DNAHs, and TEKTs were enriched in the microtubule cytoskeleton and cilium morphogenesis/movement. All these results indicated that ammonia exposure induces nasal mucosal hyperplasia and cilia dysfunction, as well as a systemic inflammatory response in piglets. These findings provide new evidence for understanding the damage mechanism of ammonia on the nasal mucosa.
ISSN:2314-6133
2314-6141
DOI:10.1155/2020/1705387