Probing the Electrostatic and Steric Requirements for Substrate Binding in Human Platelet-Type 12-Lipoxygenase

Human platelet ALOX12 (hALOX12 or h12-LOX) has been implicated in a variety of human diseases. The present study investigates the active site of hALOX12 to more thoroughly understand how it positions the substrate and achieves nearly perfect regio- and stereospecificities (i.e., 100 ± 5% of the 12­(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2019-02, Vol.58 (6), p.848-857
Hauptverfasser: Aleem, Ansari Mukhtar, Tsai, Wan-Chen, Tena, Jennyfer, Alvarez, Gabriella, Deschamps, Joshua, Kalyanaraman, Chakrapani, Jacobson, Matthew P, Holman, Theodore
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human platelet ALOX12 (hALOX12 or h12-LOX) has been implicated in a variety of human diseases. The present study investigates the active site of hALOX12 to more thoroughly understand how it positions the substrate and achieves nearly perfect regio- and stereospecificities (i.e., 100 ± 5% of the 12­(S)-hydroperoxide product), utilizing site-directed mutagenesis. Specifically, we have determined that Arg402 is not as important in substrate binding as previously seen for hALOX15 but that His596 may play a role in anchoring the carboxy terminal of the arachidonic acid during catalysis. In addition, Phe414 creates a π-stacking interaction with a double bond of arachidonic acid (Δ11), and Ala417/Val418 define the bottom of the cavity. However, the influence of Ala417/Val418 on the profile is markedly less for hALOX12 than that seen in hALOX15. Mutating these two residues to larger amino acids (Ala417Ile/Val418Met) only increased the generation of 15-HpETE by 24 ± 2%, but conversely, smaller residues at these positions converted hALOX15 to almost 100% hALOX12 reactivity [Gan et al. (1996) J. Biol. Chem. 271, 25412–25418]. However, we were able to increase 15-HpETE to 46 ± 3% by restricting the width of the active site with the Ala417Ile/Val418Met/Ser594Thr mutation, indicating both depth and width of the active site are important. Finally, residue Leu407 is shown to play a critical role in positioning the substrate correctly, as seen by the increase of 15-HpETE to 21 ± 1% for the single Leu407Gly mutant. These results outline critical differences between the active site requirements of hALOX12 relative to hALOX15 and explain both their product specificity and inhibitory differences.
ISSN:0006-2960
1520-4995
DOI:10.1021/acs.biochem.8b01167